
A Hands-on Middle-School Robotics Software
Program at MIT

Sabina Chen, Andrew Fishberg, Eyassu Shimelis, Joel Grimm, Scott van Broekhoven, Robert Shin,

Sertac Karaman
Massachusetts Institute of Technology1,

{sabinach, fishberg}@mit.edu, {eyassu.shimelis, grimm, vanbroekhoven, shin}@ll.mit.edu, sertac@mit.edu

Abstract - Robotics competitions at the high school level
attract a large number of students across the world.
However, there is little emphasis on leveraging robotics to
get middle school students excited about pursuing STEM
education. In this paper, we describe a new program that
targets middle school students in a local, four-week
setting at the Massachusetts Institute of Technology
(MIT). It aims to excite students by teaching the very
basics of computer vision and robotics. The students
program mini car-like robots, equipped with state-of-the-
art computers, to navigate autonomously in a mock race
track. We describe the hardware and software
infrastructure that enables the program, the details of our
curriculum, and the results of a short assessment. In
addition, we describe four short programs, as well as a
session where we teach high school teachers how to teach
similar courses at their schools to their own students. The
self-assessment indicates that the students feel more
confident in programming and robotics after leaving the
program, which we hope will enable them to pursue
STEM education and robotics initiatives at school.

Index Terms – Middle School Outreach, Project-based
Learning, Robotics, Computer Science.

INTRODUCTION

Robotics is a rapidly-emerging industry with a potential to
impact many businesses. It is conceivable that many students
who are in middle school and high school education today
will be working on engineering systems that embrace
robotics and software. Hence, there is a need for getting
students in grade school excited about robotics early.
Teaching them the main concepts of engineering will enable
them to pursue STEM education in the future.
 To address this need, in 2016 we started the Beaver Works
Summer Institute (BWSI), a four-week residential STEM
program for high school seniors focused on teaching

1 DISTRIBUTION STATEMENT A. Approved for pubic release: distribution is unlimited. This material is based upon work supported under Air Force
Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the U.S. Air Force. © 2019 Massachusetts Institute of Technology. Delivered to the U.S. Government with Unlimited Rights,
as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by
DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may
violate any copyrights that exist in this work.

emerging technologies [1]. Meanwhile, there continues to be
a rapidly-growing number of high school programs dedicated
to robotics. Some of the most popular and notable programs
include the FIRST Robotics Program [2], BEST Robotics
Program [3], and the ZERO Robotics Program [4]-[7]. These
programs all share common threads of understanding the
value of hands-on active learning with robotics [8-10].
 While the BWSI program has grown substantially each
summer, we continue to learn and improve each year. Two
important lessons emerged from the first four years of the
high school course: the importance of reaching students
before their senior year of high school and the value of further
reducing the cost of our platform to promote scalability.
 Our first lesson had us considering how to reach younger
students. As other outreach enthusiasts note, timing is critical
when promoting students pursue an STEM discipline [11].
Students face pragmatic difficulties if they try to hard pivot
into a STEM field by the time they reach the BWSI program
as a high school senior. This is especially true if they chose
to pursue a less rigorous math track through high school.
While some of the aforementioned high school robotics
programs do reach middle school students, and long running
middle school robotics programs do exist [12], there is an
identified dearth of access and curriculum materials,
especially for middle school instructors [13].
 Our second lesson had us considering how to reduce the
cost of our platform. While our high school robot, was
comparably priced to other robotics programs, approximately
$5000, many external collaborators expressed an interest in a
similarly capable, cheaper platform. The mobile robotics
community already produces lots of cheap, student-ready
platforms [14]. Some notable examples include Legos
robotics kits [15-19], iRobot kits [20-22], or laptops with
wheels [23]. One recent platform, Duckietown, deserves
special shout-out, as it shares many similar design
philosophies about flexibility, course content, and software
stack [24-25]. That being said, these reduced prices often

come with significantly reduced capabilities, especially in the
movement speed.
 In this paper, we describe a new middle school program
that teaches robotics software in the context of programming
self-driving mini racing cars, which we have developed in-
house at the Massachusetts Institute of Technology (MIT).
This new program is a four-week summer program at MIT,
which we ran in Summer 2019 for the first time. The course
focused on teaching students fairly advanced concepts in
programming, computer vision, algorithmic robotics, and
robot software. The program was enabled by a new hardware
and software infrastructure system that substantially
simplified the programming for robot navigation using a
camera sensor. We present this enabling hardware and
software infrastructure, the curriculum, and the results of a
self-assessment questionnaire. We also ran a training
program for teachers to enable them to teach the same
material at their own schools. We present the results of a
questionnaire with the teachers regarding their learning and
their assessment of the program’s value for their school. All
course materials, hardware designs, software and exercises
are freely available to the community at our website
(https://mit-bwsi-racecar-ms.github.io/website/).
 This paper is organized as follows: First, we present the
hardware and software infrastructure that enables our
program. We discuss a number of elements, particularly the
utilization of Jupyter notebooks, that make the programming
of the vehicles far easier, for instance, when compared to
what the environment we reported in our earlier work with
high school students [1]. Next, we describe the details of the
program, specifically outlining the various components and
lectures. Then, we present results of self-assessment surveys
for both the students who were enrolled in our program and
the teachers we trained. Finally, we conclude the paper with
remarks.

HARDWARE & SOFTWARE INFRASTRUCTURE

In this section, we describe the hardware platform and the
software infrastructure, which we have developed in-house to
enable this program.
 a) Hardware Platform: The new hardware platform that
we utilize in this middle school program is based on our
previous hardware platform called the MIT RACECAR
(https://racecar.mit.edu). The RACECAR platform includes
a state-of-the-art embedded computer (NVIDIA Jetson Tegra
X2) together with a stereo camera (by ZED) and a planar laser
range finder (by Hokuyo). The RACECAR platform typically
costs around $5,000. We have built the MIT RACECAR for
MIT’s undergraduate robotics course, and have been utilizing
it for a high-school program [1] describes the details of the
RACECAR platform as well as the high-school program.
 The “RACECAR Model-N,” which we will refer to as the
RACECAR-N from here on, is a new platform designed, for
this middle school program, to be much easier to use and
much more affordable. The platform is powered by an
NVIDIA Jetson Nano embedded computer, which boosts a
128-core Maxwell-architecture GPU, a quad-core ARM A57

CPU, and 4GB of memory. The platform also includes an
Intel RealSense 435i camera and depth sensor, which
provides 1920x1080-resolution camera images at 30 frames
per second and 1280x720-resolution depth images at 90
frames per second together with 6-degree-of-freedom inertial
measurements. The platform also contains a YDLIDAR unit
with 10m range and 360 field of view. The computing and
sensing system is mounted on a 1/14th-scale RC plat- form,
the “Exceed RC 1/14 Tacon Thriller Short Course Truck.”
This chassis includes an electric drive motor to drive the
wheels and an electric servo motor to steer the front wheels.
We added a Pololu 6-channel servo controller to control these
motors. The mounting plate is laser cut from Delrin
Polyoxymethylene material. The design and the laser cutter
files are available for download on our website. The fully-
assembled platform is shown in Figure 1.

Figure 1. RACECAR-N with most important components
highlighted.

 In addition to the RACECAR-N hardware shown in the
figure, we have also added a portable 7” monitor that can be
connected to the NVIDIA Jetson Nano embedded computer
via the HDMI interface, a Logitech K400 Plus wireless
keyboard/trackpad, and the TP-Link AC1750 Smart WiFi
Router. Using these devices, the students can easily run and
debug the software on the RACECAR-N.

 b) Software Infrastructure: The NVIDIA Jetson Nano
embedded computer runs on the Ubuntu Linux operating
system provided by NVIDIA’s Linux 4 Tegra Jetpack. The
software infrastructure includes the Robot Operating System
(ROS), which is one of the most widely used robotics
middleware. This software infrastructure is widely-utilized in
many robotics research and development projects [26], and it
has formed the backbone of our undergraduate research at
MIT, as well as the high school summer program at MIT [1].
However, arguably, this software infrastructure is difficult to
use as-is for many reasons. Firstly, the development,
compilation and execution of the software requires the
understanding of a complex architecture involving binaries,
libraries, and various ROS tools. Secondly, most of the
process of compilation and execution of software requires
command-line tools. In many instances, such tools must be
invoked from another terminal by connecting to the car
through Wi-Fi or Ethernet.

 In order to simply software development towards making
it accessible for middle school students, we developed
additional software infrastructure, which allows students to
develop their own software via Jupyter notebooks, which is
easily accessible from a web browser. For this purpose, we
have installed a Jupyter server on the NVIDIA Jetson Nano
embedded computer on the RACECAR-N platform. We have
also made the ROS tools and the OpenCV tools accessible
from the Jupyter environment. In this new environment, the
students can connect to the car via a Jupyter notebook
running on their laptops, or better yet, they can simply use the
wireless keyboard/trackpad and the 7” screen connected to
the embedded computer on the car. In both cases, the Jupyter
notebook runs on a web browser, where the students can
develop and execute software. The ROS and OpenCV
functionality is provided to them via simple functions, e.g.,
drive the motor at a given speed or steer the front wheels at a
given angle. This new infrastructure eliminates the need to
interface with complex software architecture.
 We observed that the new software infrastructure
simplifies the software development process for robotics
tremendously, allowing students to focus on developing and
implementing core algorithms on the robot in a matter of
minutes.

CURRICULUM

In this section, we describe the salient features of the program
and its implementation.

Figure 2. The details of the four instances of the program.

 a) Program: The program was taught in four instances.
The first instance was during the Spring of 2019, targeting
local middle school students from inner city Boston. The
program ran on four Saturdays from 9:45AM to 2PM. The
second was during the Summer of 2019, targeting local
middle school students. This instance was organized into a
summer school of 4 weeks, Monday through Friday, from
9AM to 3PM. The third instance was an all-girls class, run
during Fall of 2019 during the weekends, on Saturdays from
11AM to 2PM for 8 weeks. Finally, the fourth instance
targeted high school and middle school teachers in January
2020, and ran on Saturdays for 4 weeks, from 9AM to 5PM.
This information is summarized in Figure 2 along with

information on a typical agenda, the topic overview, the
number of students, and the full-time staff. An estimate of
number of hours of technical instruction and technical
exercises is also reported in the figure.

 b) Technical Content: The technical content differs
slightly between the four different instances of the program,
as seen in “Topic Overview” from Figure 2. In this section,
we explain the technical content for the Summer 2019
instance of the program, which covers the most amount of
technical material. The initial Spring 2019 session, as a
shorter class, covered a subset of the material later taught
during the summer. During the Fall 2019 all-girls offering,
we left out a few of the lectures from the modules listed in
the topics due to time constraints. In the January 2020
instance, taught to middle school and high school teachers,
we added in an entire day to build the cars from their off-the-
shelf parts. Building the cars is not included in the general
middle-school program curriculum due to logistical and time
difficulties. However, this module was added in for the
teachers to enable them to have a more grounded
understanding of the racecar components that they will be
teaching and building themselves in the classroom.
 The technical content is split into three modules: (i)
essentials of programming with Python, (ii) fundamentals of
computer vision with OpenCV, and (iii) basics of
autonomous robotics software. In addition, after completing
these modules, the program features a “final challenge,” in
which the students build on the materials that they have
learned, in order to develop software for a fully-autonomous
vehicle to navigate through a mock racing course.
 Each module is divided into several lectures. Each lecture
includes a slide presentation as well as an associated Jupyter
notebook for interactive exercises. In many Jupyter notebook
exercises, the students “fill in the blanks” after understanding
the foundational concepts. Conceptually, the students fill in
missing code pieces to solve small problems that are
described to them in the Jupyter notebooks; the concepts
required to solve these problems are provided in the slides
presented in the lectures. As the modules advance, the
students need to fill in larger amounts of software. In the final
challenge, the students build most of the software system
themselves. All of the slide presentations and the Jupyter
notebooks are available on the course website (https://mit-
bwsi-racecar-ms.github.io/website/).
 The Python module teaches the basics of programming,
including storage concepts (e.g. data types and variables),
conditional statements, functions, loops, and also more
complex data structures, such as tuples and dictionaries. It
also has an advanced lecture on object-oriented
programming. These topics are already fairly advanced
material at the middle school level. Therefore, making the
Jupyter notebooks explanatory, accessible, and full of
interactive exercises, enables us to go over this material with
the students in a more in-depth, but digestible manner. The
exercises are supported with slide presentations which give
an overview of the concepts to be applied.

 In addition, we have prepared a second part on Python
programming that focuses on building basic games with
Python, which we have observed to especially attract students
to the material. Specifically, we have prepared lectures to
build a tic-tac-toe game, a hangman game, and a cube runner.
These exercises can be completed with the help of instructors,
and immerse the students into the programming exercises,
since the students can explicitly see their software execute in
an engaging way, allowing them to better grasp the essentials
of Python programming.
 The fundamentals of computer vision with OpenCV
module start from the very basics of image manipulation and
gradually introduces students to more useful, complex
computer vision tasks, such as object recognition. The
module starts with a lecture on displaying shapes and colors
on the screen, as well as loading up images from the computer
disk or the camera. The next two lectures introduce students
to the basics of colors (e.g. generating colors through
combining red, green and blue pixel values) and color spaces
(e.g. hue, saturation and value). The following two lectures
then give an overview of color masking, teaching the students
how to extract shapes of a certain color from the camera
image by manipulating color spaces. Finally, the module
concludes with lectures that enable students to identify
objects within an image by applying more complex topics,
such as extracting contours from masks, computing the
locations and sizes of masks (e.g., bounding boxes), detecting
features, and detecting edges in images. This module is
presented in small immersive exercises that require students
to complete code snippets to correctly execute the program.
 The final module on autonomous robotics software
teaches the basics of algorithms for autonomous navigation.
It includes five separate lectures, grouped into three parts: (i)
cone detection and cone following, (ii) line detection and line
following, and (iii) sign detection. The first part includes two
lectures on cone detection and cone following. The goal is to
program the behavior for the car to detect a cone, drive the
car towards the cone, and then park the car at a certain
distance in front of the cone. The software uses color masking
(which the students learned in the OpenCV module) to detect
and isolate the cone in the image, and then to create a
bounding box around it. Then, based on the location and size
of the bounding box, the software must detect the relative
orientation of the cone with respect to the car and the distance
between the cone and the car. Finally, the software must
determine the steering angle necessary to drive the car
towards the cone, and stop the car when the distance between
the cone and the car reaches the desired value. The second
part focuses on line detection and following. In this lecture,
the software must detect a line on the ground and steer the car
in order to follow the line based on a specified “look-ahead”
distance. Line following is a challenging computer vision
task because students must develop their software not only to
detect the line, but also to understand which direction it must
curve towards. Line following directly builds upon the
concepts learned in OpenCV and cone following, but with a
slight twist in application. The third part is a single lecture on

detecting signs using basic feature detection algorithms, such
as SIFT, SURF, and ORB, available in OpenCV.
 The final challenge includes a complex map that has
different color lines laid on the ground. Students use the
concepts learned in the past three modules: Python, OpenCV,
and Robotics to program their racecar to autonomously
navigate the track. By just following one color, the students
can successfully navigate the track by using a simple line
follower. Shortcuts are also available for students who wish
to apply the more complex topics taught in class. Yellow
colored lines, orange cones, as well as one-way signs act as
shortcuts. The more in-depth the students are able to
understand the concepts taught in class and apply it to the
final challenge, the faster and more accurately their car will
be able to finish the track.
 A sample track for two teams is shown in Figure 3. The
final challenge is split into two parts: (i) individual time trials
and (ii) a tournament style competition, with two teams
competing on the track at a time. The tournament teams are
initialized with the results of the individual time trials.

Figure 3. An example racing track. The start locations for the
two teams are shown at the front center by the checkerboard
flag. One team follows the green line and the other team
follows the blue line on the course. Following the yellow tape,
cones, and one-way signs create shortcuts. Other racing
courses can be created similarly.

 The three main modules, Python, OpenCV, and Robotics,
are taught in one week each. The last week is dedicated to the
final racing challenge. The students work in teams of two to
develop software to navigate through the course fully
autonomously during this time. Recall that the total length of
the Summer 2019 program is four weeks.

ASSESSMENT

 We present a preliminary assessment of this program via
a set of self-assessment questionnaires. In this section, we
present the results of the self-assessment questionnaires for
the Summer 2019 program, and the January 2020 teacher’s
training program.
 a) Self-assessment questionnaires for students: With
the students, we have attempted to assess their comfort level
with (i) General Programming, (ii) Python, (iii) OpenCV, (iv)
Robotics. For this purpose, we directed the questions to ask:
“How would you rate your comfortability with ...?” The
choices ranged from 1 to 5, with 1 being ”not comfortable”

and 5 being ”very comfortable”. There were 24 students total
in the Summer 2019 session who took the same questionnaire
on the First and Last day of class. The results are presented
in Figures 4-7.
 In Figure 4, we observe that the students come to the class
with some knowledge of programming, even though most of
them rate themselves as neutral or not very comfortable. It is
worth noting that no student chose “not comfortable” (score
of 1). Typically, even in middle school, we find that there is
some emphasis of some kind of programming, which makes
the students familiar with concepts and gives them some
comfort level. When students leave the program, we observe
that most of them rate themselves as comfortable with
programming. We notice that the number of students who
rate themselves very comfortable (score of 5) increases, but
not by a large degree. However, we notice that many students
rate themselves comfortable or neutral.

Figure 4. The student self-assessment questionnaire results
for General Programming.

Figure 5. The student self-assessment questionnaire results
for Python.

 In Figure 5, we observe that the students do not know
Python. Contrast this with their starting point in comfort level
with general programming shown in Figure 4. The students
become familiar with various ways of programming before
coming to our program. However, only a few of them feel
comfortable with Python. In fact, almost all students rate

themselves as neutral or not comfortable with Python on the
first day. We observe that the students leave our program with
all students rating themselves at least neutral or comfortable
with Python, with the majority feeling comfortable.
 In Figure 6, we asked the students about how familiar they
are with OpenCV. OpenCV is an advanced computer vision
library that most computer science students are not exposed
to until the college-level. Furthermore, most middle school
students have never worked with real images in their
computer science classes or relevant extracurriculars.
Therefore, it is not very surprising that almost all students had
never heard of OpenCV, with 22 out of the 24 students giving
a rating of 1 (not comfortable) on the first day. However, as
further shown in Figure 6, the students leave our program
with relatively higher comfortability in OpenCV.

Figure 6. The student self-assessment questionnaire results
for OpenCV.

Figure 7. The student self-assessment questionnaire results
for Robotics.

 In Figure 7, we ask the students about their comfort level
with robotics. We notice that the students report various
comfort levels. We note that there were some students who
have been involved in robotics programs and extracurriculars
in school. However, most of these programs have focused
more on the mechanics side of robotics, e.g., building
hardware that can be controlled manually with a pre-

programmed joystick. These programs typically do not
include any programming of intelligence that executes a
sensing, computing, and actuation loop. Therefore, when
leaving the program, we observe that most students feel
comfortable with both robotics and software programming
combined.
 b) Self-assessment questionnaires for teachers: We also
executed a self-assessment questionnaire for the teachers,
before and after our teacher training program that was run
during January 2020. Similarly to the questions asked of the
students, we attempted to assess the teachers’ comfort level
with (i) Python, (ii) OpenCV, and (iii) Robotics. The choices
ranged from 1 to 5, with 1 being ”not comfortable” and 5
being ”very comfortable”. There were 22 teachers total in the
January 2020 session, however only 15 took both the First
and Last Day questionnaires. Figures 8-13 only show the
questionnaire results of these 15 individuals.

Figure 8. The teacher self-assessment questionnaire results
for Python.

 In Figure 8, we ask the teachers about their comfort level
with Python. We notice that the teachers come with a wide
range of familiarity with Python. However, most of the
teachers are not comfortable with Python before starting our
program. After the program we notice that most of them gain
some familiarity.

Figure 9. The teacher self-assessment questionnaire results
for OpenCV.

 In Figure 9, we ask the teachers about their comfort level
with OpenCV. We notice that the majority of teachers ranked
1 (not comfortable) for OpenCV. While a few teachers have
heard about OpenCV before, most teachers have never
utilized any functionality of OpenCV. We notice that teachers
become more familiar with OpenCV, even though almost all
of them do not reach the comfort level above the neutral level
(score of 3 out of 5) in the time frame available for the
program.
 In Figure 10, we ask the teachers about their comfort level
with robotics. We notice that the teachers come to our
program with varying comfort levels. After the program, we
observe a general increase in their comfort level with
robotics, after working with the RACECAR-N platform.

Figure 10. The teacher self-assessment questionnaire results
for Robotics.

 c) Teachers Feedback on Scaling: Our hope is that the
course we have developed can be scaled by teachers teaching
the same material in their own schools, potentially with the
online materials supplied by MIT. To assess this possibility,
we also asked the teachers a number of questions to get
feedback on our program and its potential on middle school
and high school education, which we report in Figures 11-13.

Figure 11. The teacher questionnaire result for interest in
project-based courses in robotics and artificial intelligence.

 In Figure 11, we ask the teachers whether they are
interested in providing their students with more options in
project-based courses in computer science and artificial
intelligence. The choices ranged from 1 to 5, with 1 being
“not interested” and 5 being “very interested”. We observe
that almost all of the teachers we questioned tell us that they
are very interested.
 In Figure 12, we ask the teachers whether this program is
suited for their school. The choices ranged from 1 to 5, with
1 being ”not suitable” and 5 being ”very suitable”. We
observe that a majority of teachers report that this program is
very suitable, while a few of them report that the program is
not suitable.

Figure 12. The teacher questionnaire result for suitability of
this program in their schools.

Figure 13. The teacher questionnaire result for whether our
sessions with them will allow them to teach our program to
their students in their schools.

 In Figure 13, we ask the teachers whether our sessions
with them allow them to teach the same program in their
middle schools and high schools. The choices ranged from 1
to 5, with 1 being ”not prepared” and 5 being ”very
prepared”. We observe that the teachers are neutral, with a
slight preference towards being able to teach the same course.

 We recall that this program was a four-day program
spread over four weeks on every. We believe that, with more
hours invested in this training, the results might improve
further for the teachers. However, providing this education to
the teachers in a reasonable time frame still remains an
important challenge.

CONCLUSIONS

In this paper, we presented a new middle school robotics
software program. The program is powered by a mini car-like
robotic vehicle designed in-house. This platform features an
easy-to-use software development environment enabled by
Jupyter notebooks. The students learn the basics of
programming with Python, computer vision with OpenCV,
and autonomous robotics. They apply their skills in a final
course challenge. In the preliminary assessment of the course,
we observe that the students report that they have become
familiar with programming, computer vision and robotics
software through this curriculum. We also ran a training
session for middle school and high school teachers, who
report that they are interested in teaching project-based
courses that emphasize computer science and artificial
intelligence, and that many of them find our program
valuable. However, our training of the teachers may be
relatively short, with only a few teachers prepared to teach it
in their own schools at the end. Hence, training the next-
generation of teachers to scale our program to middle schools
and high schools across the country remains a challenge for
the future.

REFERENCES

[1] Karaman, Sertac et al., Project-based, Collaborative, Algorithmic
Robotics for High School Students: Programming Self-driving Race
Cars at MIT, Proceedings of the IEEE Integrated STEM Education
Conference, 2017.

[2] C. Chalmers, “Learning with FIRST LEGO League,” Society for
Information Technology and Teacher …, 2013.

[3] H. Fike, P. Barnhart, C. E. Brevik, E. C. Brevik, C. Burgess, J. Chen,
S. Egli, B. Harris, P. J. Johanson, N. Johnson, M. Moe, and R. Olsen,
“Using a robotics competition to teach about and stimulate
enthusiasm for Earth science and other STEM topics,” EGU General
Assembly, 2016.

[4] A. Saenz-Otero, J. Katz, and S. Mohan, “ZERO-Robotics: A student
competition aboard the International Space Station,” IEEE Aerospace
Conference, 2010.

[5] S. Nag, I. Heffan, A. Saenz-Otero, and M. Lydon, “SPHERES Zero
Robotics software development: Lessons on crowdsourcing and
collaborative competition,” presented at the IEEE Aerospace
Conference, 2012, pp. 1–17.

[6] D. W. Miller, “ZERO-Robotics: a Student Competition Aboard the
International Space Station,” presented at the Next-Generation
Suborbital Researchers Conference, 2010.

[7] A. Saenz-Otero and J. Katz, “The Zero Robotics SPHERES
Challenge 2010,” IEEE Aerospace and Electronic Systems Magazine,
2011.

[8] Freeman, S., Eddy, S. L., McDonough, M., et al. 2014. “Active
learning increases student performance in science, engineering, and
mathematics,” Proceedings of the National Academy of Sciences,
111(23), 8410-8415.

[9] Kolberg, E., and Orlev, N. October 2001. “Robotics learning as a tool
for integrating science technology curriculum in K-12 schools.” In

31st Annual Frontiers in Education Conference. Impact on
Engineering and Science Education. Conference Proceedings (Cat.
No. 01CH37193) (Vol. 1, pp. T2E-12). IEEE.

[10] Welch, A., and Huffman, D. 2011. “The effect of robotics
competitions on high school students' attitudes toward science.”
School Science and Mathematics, 111(8), 416-424.

[11] Herger, L. M., and Bodarky, M. March 2015. “Engaging students
with open source technologies and Arduino.” In 2015 IEEE
Integrated STEM Education Conference (pp. 27-32). IEEE.

[12] Nugent, G., Barker, B., Grandgenett, N., & Welch, G. 2016.
“Robotics camps, clubs, and competitions: Results from a US
robotics project.” Robotics and Autonomous Systems, 75, 686-691.

[13] Morais, I., and Bachrach, M. S. March 2019. “Analyzing the Impact
of Computer Science Workshops on Middle School Teachers.” In
2019 IEEE Integrated STEM Education Conference (ISEC) (pp. 57-
61). IEEE.

[14] E. Irigoyen, E. Larzabal, and R. Priego, “Low-cost platforms used in
Control Education: An educational case study,” presented at the IFAC
Symposium Advances in Control Education, 2013, vol. 46, no. 17,
pp. 256–261.

[15] C. Chalmers, “Learning with FIRST LEGO League,” Society for
Information Technology and Teacher ..., 2013

[16] E. Danahy, E. Wang, J. Brockman, A. Carberry, B. Shapiro, and C. B,
“LEGO-based Robotics in Higher Education: 15 Years of Student
Creativity,” International Journal of Advanced Robotic Systems,
pp.1–16, 2014.

[17] L. E. Whitman and T. L. Witherspoon, “Using legos to interest high
school students and improve k12 stem education,” presented at the
33rd Annual Frontiers in Education, 2003. FIE 2003., 2003, vol. 2,
pp. F3A_6–F3A_10.

[18] A. Salamon, S. Kupersmith, and D. Housten, “Inspiring Future
Young Engineers Through Robotics Outreach,” presented at the
Proceedings of the Global Conference on Educational Robotics, 2008,
pp. 1–7.

[19] E. Afari and M. S. Khine, “Robotics as an Educational Tool: Impact
of Lego Mindstorms,” IJIET, vol. 7, no. 6, pp. 437–442, 2017

[20] Tribelhorn, B., and Dodds, Z. April 2007. “Evaluating the Roomba: A
low-cost, ubiquitous platform for robotics research and education.” In
Proceedings 2007 IEEE International Conference on Robotics and
Automation (pp. 1393-1399). IEEE.

[21] M. J. Mataric, N. Koenig, and D. Feil-Seifer, “Materials for Enabling
Hands-On Robotics and STEM Education,” presented at the AAAI
Spring Symposium Semantic Scientific Knowledge Integration, 2007,
pp. 1–4.

[22] T. L. Crenshaw and S. Beyer, “UPBOT: A Testbed for Cyber-
Physical Systems,” presented at the Proceedings of the International
conference on Cyber security experimentation and test, 2010.

[23] J. Kelly, J. Binney, A. Pereira, O. Khan, and G. Sukhatme, “Just Add
Wheels: Leveraging Commodity Laptop Hardware for Robotics and
AI Education ,” presented at the Proceedings of AAAI Education

[24] Tani, J., Paull, L., Zuber, M. T., et al. November 2016. “Duckietown:
an innovative way to teach autonomy.” In International Conference
EduRobotics 2016 (pp. 104-121). Springer, Cham.

[25] Paull, L., Tani, J., Ahn, H., et al. May 2017. “Duckietown: an open,
inexpensive and flexible platform for autonomy education and
research.” In 2017 IEEE International Conference on Robotics and
Automation (ICRA) (pp. 1497-1504). IEEE.

[26] Quigley, M., Conley, K., Gerkey, B., et al. May 2009. “ROS: an
open-source Robot Operating System.” In ICRA workshop on open
source software (Vol. 3, No. 3.2, p. 5).

