
A Hands-on Middle-School Robotics Software 
Program at MIT 

 
Sabina Chen, Andrew Fishberg, Eyassu Shimelis, Joel Grimm, Scott van Broekhoven, Robert Shin, 

Sertac Karaman 
Massachusetts Institute of Technology1,  

{sabinach, fishberg}@mit.edu, {eyassu.shimelis, grimm, vanbroekhoven, shin}@ll.mit.edu, sertac@mit.edu 
 

 
Abstract - Robotics competitions at the high school level 
attract a large number of students across the world. 
However, there is little emphasis on leveraging robotics to 
get middle school students excited about pursuing STEM 
education. In this paper, we describe a new program that 
targets middle school students in a local, four-week 
setting at the Massachusetts Institute of Technology 
(MIT). It aims to excite students by teaching the very 
basics of computer vision and robotics. The students 
program mini car-like robots, equipped with state-of-the-
art computers, to navigate autonomously in a mock race 
track. We describe the hardware and software 
infrastructure that enables the program, the details of our 
curriculum, and the results of a short assessment. In 
addition, we describe four short programs, as well as a 
session where we teach high school teachers how to teach 
similar courses at their schools to their own students. The 
self-assessment indicates that the students feel more 
confident in programming and robotics after leaving the 
program, which we hope will enable them to pursue 
STEM education and robotics initiatives at school.   
 
Index Terms – Middle School Outreach, Project-based 
Learning, Robotics, Computer Science. 

INTRODUCTION 

Robotics is a rapidly-emerging industry with a potential to 
impact many businesses. It is conceivable that many students 
who are in middle school and high school education today 
will be working on engineering systems that embrace 
robotics and software. Hence, there is a need for getting 
students in grade school excited about robotics early. 
Teaching them the main concepts of engineering will enable 
them to pursue STEM education in the future. 
     To address this need, in 2016 we started the Beaver Works 
Summer Institute (BWSI), a four-week residential STEM 
program for high school seniors focused on teaching 
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emerging technologies [1]. Meanwhile, there continues to be 
a rapidly-growing number of high school programs dedicated 
to robotics. Some of the most popular and notable programs 
include the FIRST Robotics Program [2], BEST Robotics 
Program [3], and the ZERO Robotics Program [4]-[7]. These 
programs all share common threads of understanding the 
value of hands-on active learning with robotics [8-10].  
     While the BWSI program has grown substantially each 
summer, we continue to learn and improve each year. Two 
important lessons emerged from the first four years of the 
high school course: the importance of reaching students 
before their senior year of high school and the value of further 
reducing the cost of our platform to promote scalability. 
     Our first lesson had us considering how to reach younger 
students. As other outreach enthusiasts note, timing is critical 
when promoting students pursue an STEM discipline [11]. 
Students face pragmatic difficulties if they try to hard pivot 
into a STEM field by the time they reach the BWSI program 
as a high school senior. This is especially true if they chose 
to pursue a less rigorous math track through high school. 
While some of the aforementioned high school robotics 
programs do reach middle school students, and long running 
middle school robotics programs do exist [12], there is an 
identified dearth of access and curriculum materials, 
especially for middle school instructors [13]. 
     Our second lesson had us considering how to reduce the 
cost of our platform. While our high school robot, was 
comparably priced to other robotics programs, approximately 
$5000, many external collaborators expressed an interest in a 
similarly capable, cheaper platform. The mobile robotics 
community already produces lots of cheap, student-ready 
platforms [14]. Some notable examples include Legos 
robotics kits [15-19], iRobot kits [20-22], or laptops with 
wheels [23]. One recent platform, Duckietown, deserves 
special shout-out, as it shares many similar design 
philosophies about flexibility, course content, and software 
stack [24-25]. That being said, these reduced prices often 



come with significantly reduced capabilities, especially in the 
movement speed. 
     In this paper, we describe a new middle school program 
that teaches robotics software in the context of programming 
self-driving mini racing cars, which we have developed in-
house at the Massachusetts Institute of Technology (MIT). 
This new program is a four-week summer program at MIT, 
which we ran in Summer 2019 for the first time. The course 
focused on teaching students fairly advanced concepts in 
programming, computer vision, algorithmic robotics, and 
robot software.  The program was enabled by a new hardware 
and software infrastructure system that substantially 
simplified the programming for robot navigation using a 
camera sensor. We present this enabling hardware and 
software infrastructure, the curriculum, and the results of a 
self-assessment questionnaire. We also ran a training 
program for teachers to enable them to teach the same 
material at their own schools. We present the results of a 
questionnaire with the teachers regarding their learning and 
their assessment of the program’s value for their school. All 
course materials, hardware designs, software and exercises 
are freely available to the community at our website 
(https://mit-bwsi-racecar-ms.github.io/website/).  
     This paper is organized as follows: First, we present the 
hardware and software infrastructure that enables our 
program. We discuss a number of elements, particularly the 
utilization of Jupyter notebooks, that make the programming 
of the vehicles far easier, for instance, when compared to 
what the environment we reported in our earlier work with 
high school students [1]. Next, we describe the details of the 
program, specifically outlining the various components and 
lectures. Then, we present results of self-assessment surveys 
for both the students who were enrolled in our program and 
the teachers we trained. Finally, we conclude the paper with 
remarks.   

HARDWARE & SOFTWARE INFRASTRUCTURE 

In this section, we describe the hardware platform and the 
software infrastructure, which we have developed in-house to 
enable this program.   
     a) Hardware Platform: The new hardware platform that 
we utilize in this middle school program is based on our 
previous hardware platform called the MIT RACECAR 
(https://racecar.mit.edu). The RACECAR platform includes 
a state-of-the-art embedded computer (NVIDIA Jetson Tegra 
X2) together with a stereo camera (by ZED) and a planar laser 
range finder (by Hokuyo). The RACECAR platform typically 
costs around $5,000. We have built the MIT RACECAR for 
MIT’s undergraduate robotics course, and have been utilizing 
it for a high-school program [1] describes the details of the 
RACECAR platform as well as the high-school program. 
     The “RACECAR Model-N,” which we will refer to as the 
RACECAR-N from here on, is a new platform designed, for 
this middle school program, to be much easier to use and 
much more affordable. The platform is powered by an 
NVIDIA Jetson Nano embedded computer, which boosts a 
128-core Maxwell-architecture GPU, a quad-core ARM A57 

CPU, and 4GB of memory. The platform also includes an 
Intel RealSense 435i camera and depth sensor, which 
provides 1920x1080-resolution camera images at 30 frames 
per second and 1280x720-resolution depth images at 90 
frames per second together with 6-degree-of-freedom inertial 
measurements. The platform also contains a YDLIDAR unit 
with 10m range and 360 field of view. The computing and 
sensing system is mounted on a 1/14th-scale RC plat- form, 
the “Exceed RC 1/14 Tacon Thriller Short Course Truck.” 
This chassis includes an electric drive motor to drive the 
wheels and an electric servo motor to steer the front wheels. 
We added a Pololu 6-channel servo controller to control these 
motors. The mounting plate is laser cut from Delrin 
Polyoxymethylene material. The design and the laser cutter 
files are available for download on our website. The fully-
assembled platform is shown in Figure 1. 
 

 
Figure 1. RACECAR-N with most important components 
highlighted.  
 
     In addition to the RACECAR-N hardware shown in the 
figure, we have also added a portable 7” monitor that can be 
connected to the NVIDIA Jetson Nano embedded computer 
via the HDMI interface, a Logitech K400 Plus wireless 
keyboard/trackpad, and the TP-Link AC1750 Smart WiFi 
Router. Using these devices, the students can easily run and 
debug the software on the RACECAR-N.  
 
     b) Software Infrastructure: The NVIDIA Jetson Nano 
embedded computer runs on the Ubuntu Linux operating 
system provided by NVIDIA’s Linux 4 Tegra Jetpack. The 
software infrastructure includes the Robot Operating System 
(ROS), which is one of the most widely used robotics 
middleware. This software infrastructure is widely-utilized in 
many robotics research and development projects [26], and it 
has formed the backbone of our undergraduate research at 
MIT, as well as the high school summer program at MIT [1]. 
However, arguably, this software infrastructure is difficult to 
use as-is for many reasons. Firstly, the development, 
compilation and execution of the software requires the 
understanding of a complex architecture involving binaries, 
libraries, and various ROS tools. Secondly, most of the 
process of compilation and execution of software requires 
command-line tools. In many instances, such tools must be 
invoked from another terminal by connecting to the car 
through Wi-Fi or Ethernet. 



     In order to simply software development towards making 
it accessible for middle school students, we developed 
additional software infrastructure, which allows students to 
develop their own software via Jupyter notebooks, which is 
easily accessible from a web browser. For this purpose, we 
have installed a Jupyter server on the NVIDIA Jetson Nano 
embedded computer on the RACECAR-N platform. We have 
also made the ROS tools and the OpenCV tools accessible 
from the Jupyter environment. In this new environment, the 
students can connect to the car via a Jupyter notebook 
running on their laptops, or better yet, they can simply use the 
wireless keyboard/trackpad and the 7” screen connected to 
the embedded computer on the car. In both cases, the Jupyter 
notebook runs on a web browser, where the students can 
develop and execute software. The ROS and OpenCV 
functionality is provided to them via simple functions, e.g., 
drive the motor at a given speed or steer the front wheels at a 
given angle. This new infrastructure eliminates the need to 
interface with complex software architecture. 
     We observed that the new software infrastructure 
simplifies the software development process for robotics 
tremendously, allowing students to focus on developing and 
implementing core algorithms on the robot in a matter of 
minutes. 
 

CURRICULUM 

In this section, we describe the salient features of the program 
and its implementation. 
 

 
Figure 2. The details of the four instances of the program. 
 
     a) Program: The program was taught in four instances. 
The first instance was during the Spring of 2019, targeting 
local middle school students from inner city Boston. The 
program ran on four Saturdays from 9:45AM to 2PM. The 
second was during the Summer of 2019, targeting local 
middle school students. This instance was organized into a 
summer school of 4 weeks, Monday through Friday, from 
9AM to 3PM. The third instance was an all-girls class, run 
during Fall of 2019 during the weekends, on Saturdays from 
11AM to 2PM for 8 weeks. Finally, the fourth instance 
targeted high school and middle school teachers in January 
2020, and ran on Saturdays for 4 weeks, from 9AM to 5PM. 
This information is summarized in Figure 2 along with 

information on a typical agenda, the topic overview, the 
number of students, and the full-time staff. An estimate of 
number of hours of technical instruction and technical 
exercises is also reported in the figure. 
 
     b) Technical Content: The technical content differs 
slightly between the four different instances of the program, 
as seen in “Topic Overview” from Figure 2. In this section, 
we explain the technical content for the Summer 2019 
instance of the program, which covers the most amount of 
technical material. The initial Spring 2019 session, as a 
shorter class, covered a subset of the material later taught 
during the summer. During the Fall 2019 all-girls offering, 
we left out a few of the lectures from the modules listed in 
the topics due to time constraints. In the January 2020 
instance, taught to middle school and high school teachers, 
we added in an entire day to build the cars from their off-the-
shelf parts. Building the cars is not included in the general 
middle-school program curriculum due to logistical and time 
difficulties. However, this module was added in for the 
teachers to enable them to have a more grounded 
understanding of the racecar components that they will be 
teaching and building themselves in the classroom. 
     The technical content is split into three modules: (i) 
essentials of programming with Python, (ii) fundamentals of 
computer vision with OpenCV, and (iii) basics of 
autonomous robotics software. In addition, after completing 
these modules, the program features a “final challenge,” in 
which the students build on the materials that they have 
learned, in order to develop software for a fully-autonomous 
vehicle to navigate through a mock racing course. 
     Each module is divided into several lectures. Each lecture 
includes a slide presentation as well as an associated Jupyter 
notebook for interactive exercises. In many Jupyter notebook 
exercises, the students “fill in the blanks” after understanding 
the foundational concepts. Conceptually, the students fill in 
missing code pieces to solve small problems that are 
described to them in the Jupyter notebooks; the concepts 
required to solve these problems are provided in the slides 
presented in the lectures. As the modules advance, the 
students need to fill in larger amounts of software. In the final 
challenge, the students build most of the software system 
themselves. All of the slide presentations and the Jupyter 
notebooks are available on the course website (https://mit-
bwsi-racecar-ms.github.io/website/). 
     The Python module teaches the basics of programming, 
including storage concepts (e.g. data types and variables), 
conditional statements, functions, loops, and also more 
complex data structures, such as tuples and dictionaries. It 
also has an advanced lecture on object-oriented 
programming. These topics are already fairly advanced 
material at the middle school level. Therefore, making the 
Jupyter notebooks explanatory, accessible, and full of 
interactive exercises, enables us to go over this material with 
the students in a more in-depth, but digestible manner. The 
exercises are supported with slide presentations which give 
an overview of the concepts to be applied.  



     In addition, we have prepared a second part on Python 
programming that focuses on building basic games with 
Python, which we have observed to especially attract students 
to the material. Specifically, we have prepared lectures to 
build a tic-tac-toe game, a hangman game, and a cube runner. 
These exercises can be completed with the help of instructors, 
and immerse the students into the programming exercises, 
since the students can explicitly see their software execute in 
an engaging way, allowing them to better grasp the essentials 
of Python programming. 
     The fundamentals of computer vision with OpenCV 
module start from the very basics of image manipulation and 
gradually introduces students to more useful, complex 
computer vision tasks, such as object recognition. The 
module starts with a lecture on displaying shapes and colors 
on the screen, as well as loading up images from the computer 
disk or the camera. The next two lectures introduce students 
to the basics of colors (e.g. generating colors through 
combining red, green and blue pixel values) and color spaces 
(e.g. hue, saturation and value). The following two lectures 
then give an overview of color masking, teaching the students 
how to extract shapes of a certain color from the camera 
image by manipulating color spaces. Finally, the module 
concludes with lectures that enable students to identify 
objects within an image by applying more complex topics, 
such as extracting contours from masks, computing the 
locations and sizes of masks (e.g., bounding boxes), detecting 
features, and detecting edges in images. This module is 
presented in small immersive exercises that require students 
to complete code snippets to correctly execute the program. 
     The final module on autonomous robotics software 
teaches the basics of algorithms for autonomous navigation. 
It includes five separate lectures, grouped into three parts: (i) 
cone detection and cone following, (ii) line detection and line 
following, and (iii) sign detection. The first part includes two 
lectures on cone detection and cone following. The goal is to 
program the behavior for the car to detect a cone, drive the 
car towards the cone, and then park the car at a certain 
distance in front of the cone. The software uses color masking 
(which the students learned in the OpenCV module) to detect 
and isolate the cone in the image, and then to create a 
bounding box around it. Then, based on the location and size 
of the bounding box, the software must detect the relative 
orientation of the cone with respect to the car and the distance 
between the cone and the car. Finally, the software must 
determine the steering angle necessary to drive the car 
towards the cone, and stop the car when the distance between 
the cone and the car reaches the desired value. The second 
part focuses on line detection and following. In this lecture, 
the software must detect a line on the ground and steer the car 
in order to follow the line based on a specified “look-ahead” 
distance. Line following is a challenging computer vision 
task because students must develop their software not only to 
detect the line, but also to understand which direction it must 
curve towards. Line following directly builds upon the 
concepts learned in OpenCV and cone following, but with a 
slight twist in application. The third part is a single lecture on 

detecting signs using basic feature detection algorithms, such 
as SIFT, SURF, and ORB, available in OpenCV. 
     The final challenge includes a complex map that has 
different color lines laid on the ground. Students use the 
concepts learned in the past three modules: Python, OpenCV, 
and Robotics to program their racecar to autonomously 
navigate the track. By just following one color, the students 
can successfully navigate the track by using a simple line 
follower. Shortcuts are also available for students who wish 
to apply the more complex topics taught in class. Yellow 
colored lines, orange cones, as well as one-way signs act as 
shortcuts. The more in-depth the students are able to 
understand the concepts taught in class and apply it to the 
final challenge, the faster and more accurately their car will 
be able to finish the track. 
     A sample track for two teams is shown in Figure 3. The 
final challenge is split into two parts: (i) individual time trials 
and (ii) a tournament style competition, with two teams 
competing on the track at a time. The tournament teams are 
initialized with the results of the individual time trials. 
 

 
Figure 3. An example racing track. The start locations for the 
two teams are shown at the front center by the checkerboard 
flag. One team follows the green line and the other team 
follows the blue line on the course. Following the yellow tape, 
cones, and one-way signs create shortcuts. Other racing 
courses can be created similarly. 
 
     The three main modules, Python, OpenCV, and Robotics, 
are taught in one week each. The last week is dedicated to the 
final racing challenge. The students work in teams of two to 
develop software to navigate through the course fully 
autonomously during this time. Recall that the total length of 
the Summer 2019 program is four weeks. 
 

ASSESSMENT 

     We present a preliminary assessment of this program via 
a set of self-assessment questionnaires. In this section, we 
present the results of the self-assessment questionnaires for 
the Summer 2019 program, and the January 2020 teacher’s 
training program. 
     a) Self-assessment questionnaires for students: With 
the students, we have attempted to assess their comfort level 
with (i) General Programming, (ii) Python, (iii) OpenCV, (iv) 
Robotics. For this purpose, we directed the questions to ask: 
“How would you rate your comfortability with ...?” The 
choices ranged from 1 to 5, with 1 being ”not comfortable” 



and 5 being ”very comfortable”. There were 24 students total 
in the Summer 2019 session who took the same questionnaire 
on the First and Last day of class. The results are presented 
in Figures 4-7. 
    In Figure 4, we observe that the students come to the class 
with some knowledge of programming, even though most of 
them rate themselves as neutral or not very comfortable. It is 
worth noting that no student chose “not comfortable” (score 
of 1). Typically, even in middle school, we find that there is 
some emphasis of some kind of programming, which makes 
the students familiar with concepts and gives them some 
comfort level. When students leave the program, we observe 
that most of them rate themselves as comfortable with 
programming. We notice that the number of students who 
rate themselves very comfortable (score of 5) increases, but 
not by a large degree. However, we notice that many students 
rate themselves comfortable or neutral. 

 
Figure 4. The student self-assessment questionnaire results 
for General Programming. 
 

 
Figure 5. The student self-assessment questionnaire results 
for Python. 
 
     In Figure 5, we observe that the students do not know 
Python. Contrast this with their starting point in comfort level 
with general programming shown in Figure 4. The students 
become familiar with various ways of programming before 
coming to our program. However, only a few of them feel 
comfortable with Python. In fact, almost all students rate 

themselves as neutral or not comfortable with Python on the 
first day. We observe that the students leave our program with 
all students rating themselves at least neutral or comfortable 
with Python, with the majority feeling comfortable. 
     In Figure 6, we asked the students about how familiar they 
are with OpenCV. OpenCV is an advanced computer vision 
library that most computer science students are not exposed 
to until the college-level. Furthermore, most middle school 
students have never worked with real images in their 
computer science classes or relevant extracurriculars. 
Therefore, it is not very surprising that almost all students had 
never heard of OpenCV, with 22 out of the 24 students giving 
a rating of 1 (not comfortable) on the first day. However, as 
further shown in Figure 6, the students leave our program 
with relatively higher comfortability in OpenCV. 
 
 

 
Figure 6. The student self-assessment questionnaire results 
for OpenCV. 
 

 
Figure 7. The student self-assessment questionnaire results 
for Robotics. 
 
     In Figure 7, we ask the students about their comfort level 
with robotics. We notice that the students report various 
comfort levels. We note that there were some students who 
have been involved in robotics programs and extracurriculars 
in school. However, most of these programs have focused 
more on the mechanics side of robotics, e.g., building 
hardware that can be controlled manually with a pre-



programmed joystick. These programs typically do not 
include any programming of intelligence that executes a 
sensing, computing, and actuation loop. Therefore, when 
leaving the program, we observe that most students feel 
comfortable with both robotics and software programming 
combined. 
     b) Self-assessment questionnaires for teachers: We also 
executed a self-assessment questionnaire for the teachers, 
before and after our teacher training program that was run 
during January 2020. Similarly to the questions asked of the 
students, we attempted to assess the teachers’ comfort level 
with (i) Python, (ii) OpenCV, and (iii) Robotics. The choices 
ranged from 1 to 5, with 1 being ”not comfortable” and 5 
being ”very comfortable”. There were 22 teachers total in the 
January 2020 session, however only 15 took both the First 
and Last Day questionnaires. Figures 8-13 only show the 
questionnaire results of these 15 individuals. 
 

 
Figure 8. The teacher self-assessment questionnaire results 
for Python.  
 
     In Figure 8, we ask the teachers about their comfort level 
with Python. We notice that the teachers come with a wide 
range of familiarity with Python. However, most of the 
teachers are not comfortable with Python before starting our 
program. After the program we notice that most of them gain 
some familiarity. 
 

 
Figure 9. The teacher self-assessment questionnaire results 
for OpenCV.  

 
     In Figure 9, we ask the teachers about their comfort level 
with OpenCV. We notice that the majority of teachers ranked 
1 (not comfortable) for OpenCV. While a few teachers have 
heard about OpenCV before, most teachers have never 
utilized any functionality of OpenCV. We notice that teachers 
become more familiar with OpenCV, even though almost all 
of them do not reach the comfort level above the neutral level 
(score of 3 out of 5) in the time frame available for the 
program. 
     In Figure 10, we ask the teachers about their comfort level 
with robotics. We notice that the teachers come to our 
program with varying comfort levels. After the program, we 
observe a general increase in their comfort level with 
robotics, after working with the RACECAR-N platform. 
 

 
Figure 10. The teacher self-assessment questionnaire results 
for Robotics.  
 
     c) Teachers Feedback on Scaling: Our hope is that the 
course we have developed can be scaled by teachers teaching 
the same material in their own schools, potentially with the 
online materials supplied by MIT. To assess this possibility, 
we also asked the teachers a number of questions to get 
feedback on our program and its potential on middle school 
and high school education, which we report in Figures 11-13. 
 

 
Figure 11. The teacher questionnaire result for interest in 
project-based courses in robotics and artificial intelligence.  



 
     In Figure 11, we ask the teachers whether they are 
interested in providing their students with more options in 
project-based courses in computer science and artificial 
intelligence. The choices ranged from 1 to 5, with 1 being 
“not interested” and 5 being “very interested”. We observe 
that almost all of the teachers we questioned tell us that they 
are very interested. 
     In Figure 12, we ask the teachers whether this program is 
suited for their school. The choices ranged from 1 to 5, with 
1 being ”not suitable” and 5 being ”very suitable”. We 
observe that a majority of teachers report that this program is 
very suitable, while a few of them report that the program is 
not suitable. 
 

 
Figure 12. The teacher questionnaire result for suitability of 
this program in their schools.  
 

 
Figure 13. The teacher questionnaire result for whether our 
sessions with them will allow them to teach our program to 
their students in their schools.  
 
     In Figure 13, we ask the teachers whether our sessions 
with them allow them to teach the same program in their 
middle schools and high schools. The choices ranged from 1 
to 5, with 1 being ”not prepared” and 5 being ”very 
prepared”. We observe that the teachers are neutral, with a 
slight preference towards being able to teach the same course. 

     We recall that this program was a four-day program 
spread over four weeks on every. We believe that, with more 
hours invested in this training, the results might improve 
further for the teachers. However, providing this education to 
the teachers in a reasonable time frame still remains an 
important challenge. 
 

CONCLUSIONS 

In this paper, we presented a new middle school robotics 
software program. The program is powered by a mini car-like 
robotic vehicle designed in-house. This platform features an 
easy-to-use software development environment enabled by 
Jupyter notebooks. The students learn the basics of 
programming with Python, computer vision with OpenCV, 
and autonomous robotics. They apply their skills in a final 
course challenge. In the preliminary assessment of the course, 
we observe that the students report that they have become 
familiar with programming, computer vision and robotics 
software through this curriculum. We also ran a training 
session for middle school and high school teachers, who 
report that they are interested in teaching project-based 
courses that emphasize computer science and artificial 
intelligence, and that many of them find our program 
valuable. However, our training of the teachers may be 
relatively short, with only a few teachers prepared to teach it 
in their own schools at the end. Hence, training the next-
generation of teachers to scale our program to middle schools 
and high schools across the country remains a challenge for 
the future.  
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