
Developing a Digital-to-Print Fabrication Pipeline

for Multi-Color Photochromic 3D Printing
by

Sabina W. Chen

Bachelor of Science in Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 2019

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author: _________________________________________________________________
Department of Electrical Engineering and Computer Science

May 20, 2021

Certified By: _________________________________________________________________
Stefanie Mueller

X-Window Consortium Career Development Assistant Professor
Thesis Supervisor

Accepted By:    _________________________________________________________________
Katrina LaCurts

Chair, Master of Engineering Thesis Committee



Developing a Digital-to-Print Fabrication Pipeline

for Multi-Color Photochromic 3D Printing
by

Sabina W. Chen

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
Stereolithography (SLA) and digital light processing (DLP) 3D printing are two common
resin-based 3D printing processes. These printing processes work by projecting a light source
onto specific areas of resin, forming thin layers of plastic that eventually stack up to create solid
objects. Because only one resin type can be used at a time, one limitation of SLA and DLP 3D
printing is that they typically only produce single-color prints. In this project, we present a novel
approach that enables multi-color resin printing using photochromic dyes. By combining DLP
with photochromic materials, our end-to-end 3D printing fabrication pipeline can create
multi-colored objects using only one type of resin-based material.

Our approach involves designing a system that supports the integration of photochromic
materials into a UV curable resin. By developing a resin that contains a mixture of photochromic
inks that can change color when exposed to different wavelengths of light, we can
programmatically change the color of the resin depending on the type of RGB light projected. To
support this new resin, we modified an existing resin-based 3D printer to incorporate both a UV
and visible light projection system. This enables us to control both the curing and coloring of an
object separately. By saturating the dyes prior to printing, and then projecting combinations of
RGB light onto each layer after it has been cured, we can color objects directly during the
printing process.

In this thesis, we provide the implementation details and design decisions that went into building
this integrated 3D printing infrastructure. We discuss the user interface, printer hardware,
software implementation, and photochromic resin formulation. We also provide operational
instructions and explanations for key design decisions of our system. Finally, we evaluate the
capabilities of our photochromic resin and printer system, and propose topics for future work.

Thesis Supervisor: Stefanie Mueller
Title: X-Window Consortium Career Development Assistant Professor
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1. Introduction

1.1. Overview
Resin-based printing typically involves printing objects from a single material, and therefore a
single color. Thus, to create objects of multiple colors, users will often need to carry out multiple
inter- or post- fabrication steps. This process can be time-consuming, especially for makers in the
HCI community that may require objects to be rapidly prototyped or integrated into existing
systems. To facilitate this issue, we developed a resin-based 3D printing method that enables
objects to be colored directly during the printing process.

Our proposed method enables users to print multi-color objects using only one type of
resin-based material by programmatically altering the material property of our resin. This
thereby reduces the number of fabrication steps necessary to create multi-colored objects, and
enables multi-colored textures to be applied to both the interior and exterior of objects.

Our printing process combines digital light processing (DLP) with photochromic materials.
Inspired by the method described in Photo-Chromeleon [1], we mix cyan, magenta, and yellow
photochromic dyes into a UV curable resin. These photopolymers can switch between colored
(saturated) and transparent (desaturated) states when exposed to specific wavelengths of light.
By saturating the dyes prior to printing, and then projecting combinations of RGB light onto each
layer to selectively desaturate each of the dyes in the resin, we can color objects as they are being
printed.

Our project aims to make a complete digital-to-print fabrication pipeline of the multi-color 3D
printing process. Specifically, our contributions include:

● A new method for multi-material 3D printing for single material DLP 3D Printers
● A new hardware setup
● An user interface for applying textures to models
● An algorithm for coloring the object during printing
● A new photochromic resin formulation

In this thesis, we provide the implementation details and design decisions that went into building
this integrated printing infrastructure, as well as an overview of the results from the experiments
conducted. We also provide a brief discussion on the limitations of our current design, as well as
recommendations for future work moving forward.
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1.2. Contribution
This project was a collaborative effort between me and Isabel Qamar, under the supervision of
Isabel Qamar, Michael Wessely, and Stefanie Mueller. Isabel spearheaded the high-level design,
research, and planning for the project. She also built the majority of the mechanical components
for the printer and conducted the final materials experiments and evaluations.

Working off of Isabel’s design ideas, I implemented the electronics, embedded systems, and
software technologies required for this project. A few of my responsibilities included setting up
the electronics, designing the control algorithms, implementing the web server and API required
for remote operation, building the mechanical components for the mirror, brainstorming
operational and experimental procedures, and developing the overall system infrastructure.

Contributions were also made by Paolo Boni, who designed the first iteration of the printer,
Kevin Tang, who updated the Arduino communication protocol, Dimitri Tskhovrebadze, who
developed the Blender add-on for the user interface, and Faraz Faruqi, who conducted the data
analysis of our experimental results.

1.3. Language and Figure Note
The pronoun “we” will be used throughout the thesis, as the project was a team effort. However,
unless specified otherwise, all the work on the electronics, embedded systems, and software
infrastructure are from myself. The term “system” will be used interchangeably to refer to this
project. Photographs were taken jointly by the project team.
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2. Related Work

2.1. Multi-Color Resin-Based Printing Systems
Fused Deposition Modeling (FDM) and stereolithography (SLA) are two of the most common
processes for 3D printing. FDM printers work by extruding thermoplastic filaments through a
heated nozzle, melting the material, and then applying the melted plastic onto a build platform
layer-by-layer until the part is complete. In contrast, SLA printers utilize a light source (UV
Laser for Laser-SLA, Digital Light Projector for DLP-SLA, and LCD for Masked-SLA) in order
to cure liquid resin into hardened plastic in a process called vat photopolymerization.

SLA printers are advantageous for professional development in a number of ways. Compared to
other 3D printing methods, SLA printers consistently produce finely detailed parts with high
dimensional accuracy and a surface finish. Furthermore, because resin is compatible with a wide
range of photopolymers, its mechanical properties can be tailored to the specific functionalities
required. This combination of versatility and functionality has enabled material manufacturers to
develop innovative resin formulations for a wide range of desired mechanical properties.

For example, Formlabs offer a Color Kit [2] for their desktop SLA printers. This color kit
contains a “Color Base” resin cartridge and five bottles of color pigments (cyan, magenta,
yellow, black and white) that can be mixed together according to predetermined recipes in order
to achieve a desired color. This colored resin can then be used for a single one-color print.

To extend beyond a single material, LayerCode [3], transforms a stereolithography printer to
support two-color prints. This is done by mounting two resin trays, each to hold a different
colored resin, then using a 180° rotatable build plate to switch between the two resin tanks
during print. While this concept could be extended to enable additional colors by increasing the
number of resin tanks, it is limited to the number of tanks that can be mounted.

2.2. Multi-Color Programmable Matter
Advancements have also been made to achieve multiple colors using a single material. One way
to do so is to use color-changing materials (ie. materials that can change their color during or
after fabrication). This can be done using electrochromic (applying voltage), thermochromic
(changing temperature), or photochromic (applying light) technology. For resin-based 3D
printing, photochromic color-changing materials are particularly suitable, as this printing process
already uses a light source, which can then be extended to accommodate new technology.

Previous work has been done in exploring the usability of photochromic technology. Specifically,
Hirayama et al. [4] explored how photochromic inks could be mixed together into a single
solution, combining cyan and yellow dyes to achieve green. Photo-Chromeleon [1] developed a
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coating system that could achieve a larger color gamut by mixing cyan, magenta and yellow dyes
into a single photochromic solution. By projecting different wavelengths of visible light from a
standard office projector, individual dyes can be programmatically desaturated, thereby
controlling the resulting color of the photochromic solution.

2.3. Multi-Color Printing using Photochromic Dyes
Inspired by recent work on color-changing materials (e.g. Photo-Chromeleon [1], Photochromic
Carpet [5], Photochromic Canvas [6], ColorMod [7]), our project addresses the challenge of
printing in multiple colors by proposing modification to the material itself through the addition
of photochromic materials to the resin. Our 3D printing method enables objects to be colored
directly during the printing process, thereby reducing the number of fabrication steps necessary
to print multi-colored 3D models. The system is built from an off-the-shelf SLA printer, with the
addition of two separate projectors - one for curing and one for coloring. This enables our system
to require only one fabrication technique and one material type to achieve our desired
multi-colored print.

The relevance of multi-color 3D printing can be found across the Human-Computer Interaction
(HCI) community. It allows makers and designers to create objects with important visual
highlights. Examples include providing users with information on the internal configuration of
breadboards [8], in the physical visualization of data [9], for developing 3D printed terrain maps
[10], or for directly embedding information into physical objects [3]. Thus, our system simplifies
the process for users within the HCI community by reducing the number of fabrication steps
necessary to create multi-colored objects. Our fabrication procedure also permits multi-colored
textures to be applied to both the interior and exterior of objects, thereby enabling users to embed
information anywhere on the printed object.

The rest of this thesis details the system architecture, implementation, operating procedures, and
experimental results of our system.
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3. Implementation

3.1. Hardware

3.1.1. 3D Printer Setup
Our multi-color 3D printing system consists of an off-the-shelf SLA printer, a UV light source
for curing the resin, an office RGB projector for desaturating the photochromic dyes, and a
mirror to project the appropriate light source onto the resin-filled base plate mounted above. The
mirror is placed directly below the SLA printer, and can be flipped to either side using a stepper
motor. The concept drawing for our design is depicted in Figure 1.

Figure 1. Conceptual design of the multi-color 3D printing system

For our assembled system, a black opaque acrylic casing was built to house all the components
and to prevent undesirable desaturating of dyes from occurring during printing. Two cut outs
were made at each end of the casing to mount the cooling fans for heat dissipation. We also spray
painted the upper casing of the printer, which houses the build plate and resin tank, in black. The
final hardware setup is shown in Figure 2.

Figure 2. Assembled hardware
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The system utilizes the ANYCUBIC Photon S LCD-based SLA 3D Printer. We chose to use this
printer because its built-in technology is easily modifiable. By default, the printer comes with a
115x65x165mm volume resin tank, a 115x165mm area build plate that acts as a flat surface for
printed objects to adhere to, a 405nm UV LED light source combined with an LCD masking
screen that controls the curing area of each layer during prints, a NEMA17 stepper motor that
controls the Z-axis movement of the build plate, and an optical limit switch (Omron
EE-SX674-WR 1M) that calibrates the position of the build plate at the start of every print.

After some initial experimentation, we realized that the built-in printer driver did not provide us
the low-level control we needed for our system. Therefore, we replaced the default printer driver
with our own external computer (Intel NUC 7, Core i7) and microcontroller (Arduino Mega
2560 Rev3). All the electronics were then rewired to be directly controlled by either the NUC or
the Arduino.

We also mounted an additional visible light projector system (AAXA Technologies M6 1200
Lumens LED Projector), which operates to selectively desaturate the photochromic color
channels within the resin. As in Photo-Chromeleon [1], the default green LED from the visible
light projector creates a light output over a broad wavelength range, which causes both the
yellow and cyan dyes to desaturate in addition to the magenta dye, thereby making it more
difficult to selectively desaturate each dye. Thus, we added a filter in front of the green LED
(Semrock Brightline® FF02-529/24-25) to limit the wavelength range, so that the green LED
only desaturates the magenta dye. Filters did not need to be added to the red or yellow LEDs.

When switching on the visible light source, we also found that the LCD masking screen
underneath the resin tank did not allow the visible light from the projector to pass through
sufficiently to desaturate the dyes in the resin. We therefore replaced the LCD screen with a
tempered glass screen (FYSTEC) and replaced the default light source with an external
higher-powered UV projector (InVision Ikarus Full-HD DLP6500 light engine 385nm), set to an
intensity of 12A.

The SLA printer, UV projector, and visible light projector can all be controlled through
Processing. The software implementation for these components is discussed in (Section 3.2.2:
Processing).

3.1.2. Mirror
To switch between the UV light source and the visible light source, we mounted two mirrors
(Optical Mirror, Glass First Surface Mirror, reflective efficiency of 96%) back-to-back, between
the two light sources. The mirrors are controlled by a stepper motor which switches the beam of
light that is directed into the resin tank mounted above. A rare earth magnet mounted to the
bottom of the mirrors and two hall-effect sensors located at 45° on either side of the mirrors,
determines the angular position of the mirrors as they rotate.
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Additional mechanical parts were developed for this mirror setup, in particular: end stops for the
hall-effect sensors, housing for the mirrors and magnets, outer casings for the hall-effect sensors,
and a mount for the stepper motor. The 3D CAD models were developed in FreeCAD, and are
shown below in Figure 3.

Figure 3. 3D models of the mirror components
Hall-Effect Endstop (left), Mirror Case w/ Magnet (middle), Mirror Assembly (right)

Because the physical parameters of the components were constantly changing during the
development of the 3D printer system, it became very difficult to keep track of the dimensions of
each model, so we made technical drawings to document the model designs. The technical
drawings were also developed in FreeCAD. The technical drawings for the hall-effect endstop
and mirror case are shown in Figure 4-5, respectively.
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Figure 4. Technical drawing for hall-effect endstop

Figure 5. Technical drawing for mirror case w/ magnet
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The models were then printed via the Ultimaker 3. The final printed mirror components are
shown Figure 6 below.

Figure 6. Individual mirror components
From left to right: endstop, mirror and magnet mount, hall-effect case

We then spray painted each printed part in black and then placed the assembled system directly
below the horizontal center of the resin tank. The fully assembled and mounted mirror system is
shown in Figure 7.

Figure 7. Assembled mirror components
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3.1.3. Camera

To monitor the printer during long prints, we placed a camera (KAMTRON 1536P) directly in
front of the printer. The camera provides a 24/7 live feed of the printer. This live feed can be
viewed through a downloadable mobile application (MIPC). The viewing angle of the camera
itself can also be rotated and adjusted remotely. In case of an emergency, the power to the printer
can be stopped remotely via a live web server. This web server is described in more detail in
(Section 3.2.4: Web Server).

3.1.4. Electronics
The Arduino (Arduino Mega 2560 Rev3) acts as the main driver board to communicate between
the digital electronics and the computer. To facilitate wiring consistency and cleanliness, we
developed a protoboard to act as a personalized Arduino shield. Header pins were soldered onto
the back of the protoboard so that it can easily be plugged into the Arduino. All actuators and
sensors are wired through this protoboard, instead of through the Arduino itself.

3.1.4.1. Wiring

Built into the protoboard are two motor drivers (A4988 Stepper Motor Driver) and one wifi
module (ESP8266 ESP-01). The protoboard is powered by a 12V power supply and provides
connections to the following actuators and sensors:

● 1 optical sensor
● 2 stepper motors
● 2 hall-effect sensors
● 2 IoT relays

The wiring schematic and wiring diagram are shown in Figures 8-9, respectively.
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Figure 8. Wiring schematic

Figure 9. Wiring diagram
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An example of the protoboard with all of its electronics plugged in can be found in Figure 10.

Figure 10. Protoboard with all electronics connected

3.1.4.2. Actuators

Two stepper motors (NEMA17) act as actuators for the system. One motor controls mirror
rotation, and the other motor controls the Z-axis movement of the base plate. Using the
AccelStepper library and two motor drivers (A4988 Stepper Motor Driver), motor speed and
distance commands can be sent to control the motors via the Arduino.

Motor Driver

A motor driver acts as an interface between each stepper motor and the Arduino. While motors
require a high amount of current to operate (12V+), the Arduino only works on low current (5V).
Thus, motor drivers act as intermediaries that take in low-current control signals from the
Arduino, and convert these signals into higher-current outputs to drive the motors.

Stepper Motor

Stepper motors are DC motors that move in discrete steps. They have multiple coils that, when
energized, will rotate the motor, one step at a time. Due to the nature of energizing these coils,
stepper motors have a tendency to overheat when powered on for long periods of time.
Therefore, we added heatsinks to each stepper motor to facilitate heat dissipation. Additionally,
the motors were also programmatically configured to automatically power off when not directly
in use (ie. during printer calibration).
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While we have considered just turning the motors on and off during the main printing process to
reduce overall heat dissipation, because the steppers will “jump” in position when energized, we
were unable to implement this option without risking precision issues, and therefore decided to
rely solely on mechanical components (ie. heatsinks and fans) to cool the motors.

AccelStepper Library

Arduino uses the AccelStepper library to communicate with the motors via the motor drivers.
This library provides an abstraction for us to set the speed and step size of the motors directly.
The max speed is capped at 1000 steps/sec, as speeds over this setting are deemed unreliable
according to the AccelStepper documentation. The NEMA17 stepper motor has a 1.8° step angle,
meaning 200 steps = 1 full revolution. Steps can be divided into “microsteps”, thereby allowing
us greater rotation precision (ie. ½ microstep = 2 microsteps per 1 full step). The higher the
microstep, the greater the precision, but the slower the rotation speed.

For the Z-axis motor, the printer’s built-in T8 Lead Screw (2mm pitch) means the base plate will
raise or lower exactly 2mm per full revolution from the stepper motor. Thus, to calculate motor
speed and distance travelled, we use this information to convert steps/sec to mm/sec, depending
on the selected microstep resolution. Users can set the desired speed (in mm/sec) of the Z-axis
motor through the Blender UI described in 3.2.1. Blender. The associated speed calculations are
shown in Figure 11 below.

Figure 11. Steps-to-MM conversion for the Z-axis stepper motor
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For the mirror motor, we found that ⅛ microstep resolution offered the best balance between
precision and speed. This step resolution is set at initialization and remains unchanged
throughout the rest of the printing process.

3.1.4.3. Sensors

The printer system utilizes three types of sensors: one optical limit switch (Omron
EE-SX674-WR 1M), two hall-effect sensors (DRV5055A4), and one wifi module (ESP8266
ESP-01).

Optical Limit Switch

The optical limit switch determines whether the base plate has lowered to “home” position.
Homing is required at the start of every print and to level the base plate during printer
calibration, as described in (Section 4.2: Leveling the Build Plate). The optical limit switch is
shaped as a T-shaped slot with an incident light that exists between the two terminals. When this
incident light is disrupted, the optical switch changes its output voltage. By reading this voltage
output via the Arduino, we can determine whether the base plate has lowered to “home” by
thresholding this analog signal.

Hall-Effect Sensors

Hall-effect sensors measure the magnetic field of its surrounding environment. They are often
used to detect the proximity, speed, or displacement of a mechanical system. We chose to use
hall-effect sensors due to its precision in conducting non-contact measurements.

The angular position of the mirror when directing the UV light and the visible light into the resin
tank, is controlled by a magnet mounted on the bottom of the mirror and two hall-effect sensors.
As the mirror and magnet (rotated via the stepper motor) get closer to the hall-effect sensors
located on either side, each sensor’s output voltage changes. By reading this voltage output via
the Arduino, and thresholding this analog signal, we can determine when to stop the mirror.

To ensure the reliability of the hall-effect sensors in positioning the mirror at 45° during each
rotation, we rotated the mirror between the UV light and the visible light 200 times. The angular
position of the mirror after the first and 200th rotation was then measured. No error was found.

WiFi Module

The ESP8266-01 is a SOC (System On a Chip) module that allows microcontrollers to access the
WiFi network. Since our Arduino does not have built-in internet capabilities of its own, we
connect this WiFi module externally via Arduino’s TX/RX pins. This enables the Arduino to
connect with the remote web server, described in (Section 3.2.4: Web Server).
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Note that because the Arduino interfaces with two devices (WiFi module and Processing), it
needs two separate UART communication channels. Using the Uno will require software serial
to enable virtual RX/TX pins (since it only has one UART channel), whereas the Mega has
multiple pin pairs of RX/TX that can be directly used. We chose to use the Arduino Mega.

3.1.4.4. Power

To control the availability of power to the printer system, we route all high-voltage devices to
two IoT power relays (Adafruit Controllable Four Outlet Power Relay Module v2). When the
relay is off, all power to the main printer components is cut off. These relays act as emergency
stop switches that can be programmatically controlled via the Arduino.

3.2. Software

3.2.1. Blender
For the user interface, we developed a Blender add-on that provides a way for users to control
different steps of the printing process using only one software application. The main
functionalities of this user interface include:

● importing and editing 3D models for printing (ie. adding texture, generating supports,
scaling)

● slicing the model to generate layer-by-layer UV and RGB projection images
● directly controlling the 3D printer itself.

Dimitri Tskhovrebadze developed the Blender add-on, Isabel Qamar guided the high-level
design, and I implemented the backend software infrastructure for Blender, Processing, and
Arduino communication. The following sections provide an overview of the resulting user
interface developed for our project.

3.2.1.1. Preparing the Model

The user interface consists of “Chromo Editor” and “Chromo Support” panels located to the left
of the main workspace. On pressing “RESET SCENE”, an example 3D model of a black and
blue checkerboard-textured surfboard is loaded into the workspace. The ground plane and the
corner plane (with white and grey checkerboard textures) represent the available 3D printing
dimensions. For performance purposes, the unit scale is 1000:1, which means 1000mm (in
Blender) = 1mm (in real world). Models can be imported, scaled, and deleted as needed. The
default workspace is displayed in Figure 12.
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Figure 12. Blender user interface

Users can slice the model by adjusting the “Layer Height” (mm) and then selecting “Slice” under
“Chromo Editor”. This generates a preview of the sliced model. Users can inspect individual
layers by varying the “Layer Visibility” settings. Additionally, on “Slice”, the number of layers
and expected volume of the printed model are calculated and displayed. The number of layers
can be used by the user to predict expected printing time, and the volume can be used to
determine how much resin to use. An example of the sliced surfboard is depicted in Figure 13.

Figure 13. Sliced model

For models with large overhangs, supports can also be generated by selecting “Generate
Support” under the “Chromo Support” section. Supports can be modified (ie. density, thickness,
angle) or deleted as necessary. The red supports are shown in Figure 14.
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Figure 14. Support generation

Because the color gamut creatable using the available photochromic dyes is limited, the user can
use “Preview Mode” to preview how the model will actually look after it is printed. When set to
ORIGINAL, the object is displayed in true colors. When set to FINAL, the object colors remap
to show what it will look like after printing. An example of the color preview applied to the
surfboard can be seen in Figure 15.

Figure 15. Color preview

By default, textures are applied top-down through each layer. This means that color can only be
propagated vertically, meaning all layers have the same texture applied top-down. To enable
objects to also be colored horizontally, users have the option to apply textures from the side view,
thereby allowing every layer generated to have a different texture. This is useful for users who
want to print multi-color objects that vary along the Y-axis. Specifically, this can be used for the
proposed experiment discussed in (Section 6.2: Evaluating the Effect of Visible Light through
Thickness). To change this projection view, a separate side-mapper.py script must be run
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after exporting the images. An example of a textured model with a comparison of the resulting
layer images produced (depending on the projection view) is shown in Figures 16-17.

Figure 16. Textured 3D pyramid model

Figure 17. Texture projection views
Top-Down (left) vs Side Projection (right)

3.2.1.2. Exporting Images

After users are done editing their models, they can generate the layer-by-layer projection images
by selecting “Export All” located under the “Export” section of the “Chromo Editor”.  Paired
black-and-white images (for the UV projector) and colored images (for the visible light
projector) are generated for each layer. All files are exported to the Processing data folder that
was specified by the user during the installation of the Blender add-on. Example .png images
generated for the pyramid model (from Figure 16 above) is shown in Figure 18 below.

Figure 18. Layer image generation
UV (left) and RGB (right) projectors
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3.2.1.3. Exporting Settings

Users can also specify the settings used during the actual print process. We modeled our print
settings after commonly found settings in professional slicers such as Ultimaker Cura and
ANYCUBIC’s Photon Workshop.

“Export Settings” generates a printSettings.json file that is later used by Processing at the
start of the print. “Export Settings” exports only this settings file, while “Export All” exports
both this settings file AND the sliced UV/RGB .png images. The separate “Export Settings”
button was created for users who only want to update the printer settings, without having to wait
for all the layer images to be sliced and generated again. All units are in either mm or sec. The
default printer settings are shown in Figure 19.

Figure 19. Printer Settings

3.2.1.4. Printer Control

Users can also control the 3D printer directly via the Blender user interface. Specifically, the 3D
printer has four modes: Menu, Calibrate, Move Home, and Run Pipeline. Whenever a mode
changes, the new mode is rewritten to mode.json by Blender. This mode.json file is then
read by Processing to update its internal printer state. The current mode can be changed by
selecting “Stop” (Menu mode), “Calibrate” (Calibrate mode), “Move Home” (Move Home
mode) or “Run Pipeline” (Run Pipeline mode). The printer controls available are shown in
Figure 20.
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Figure 20. Printer control buttons

Menu Mode

By default, the printer is in Menu mode. In this mode, the printer is awaiting commands from the
user. The user can use this time to edit the model or update/generate settings and images. To
return to Menu mode at any time, select “Stop” under the “Calibration” section.

Calibrate Mode

To change the printer to Calibrate mode, select “Calibrate” under the “Calibration” section. In
this mode, users can move the build plate up and down to a desired distance (mm) at the specified
speed (mm/sec). The move.json file is updated each time the user presses a button under the
“Calibration” section. Processing then reads this move.json file so that it can send the
appropriate control commands to Arduino.

Move Home Mode

To tell the printer to move the base plate to home, select “Move Home” under the “Calibration”
section. In this mode, the printer will lower the base plate until the optical limit switch is
triggered. This is useful for resetting the printer to a known position.

Printing Mode

To start the printing process, change the printer to Run Pipeline mode by selecting “Run
Pipeline” under the “Export” section. This tells Processing to start the print using the settings and
files generated from the previous steps. The printing process can be stopped at any time by
selecting “Stop”.

3.2.1.5. Prioritizing “Stop”

For safety purposes, the “Stop” button has top priority over all other printer commands. “Stop”
automatically overrides any processes currently being run on the printer. When “Stop” is
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selected, mode.json is immediately rewritten, which updates Processing, and consequently
tells Arduino to stop all actuation by cutting power to the motors. This priority queue was
designed so that users can halt undesirable actions performed by the 3D printer at any time,
regardless of action performed.

3.2.2. Processing
Processing acts as the “central management unit” of the system. It is responsible for keeping
track of both the internal printer state and for communicating between Blender, Arduino, the UV
projector, and the visible light projector. Processing reads user inputs from Blender, and then
proceeds to send the appropriate commands to the Arduino, which in turn controls the actuators
and sensors of the 3D printer. Processing is also responsible for projecting layer images to each
projector during prints. An overview of Processing’s control endpoints is shown in Figure 21.

Figure 21. Processing system control

3.2.2.1. State Machine

Processing has four modes of operation: Menu, Move Calibrate, Move Home, and Run Pipeline.
These modes correspond directly with Blender’s four modes, described in (Section 3.2.1.4:
Printer Control). Processing determines which mode to execute by reading the mode.json file,
which is updated by Blender based on user input. Different state transitions are executed
depending on the mode selected. The complete Processing state machine is depicted in Figure
22. Corresponding state descriptions from the source code is shown in Figure 23.
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Figure 22. Processing state machine
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Figure 23. Processing state descriptions

Initialization

On initialization, Processing establishes connection with the Arduino (S_INITIALIZE,
S_NOT_CONNECTED). After connection has been established, Processing resets the motors to a
known state (S_SET_RESOLUTION).

Menu Mode

After initialization, Processing will then proceed to idle until a mode is selected
(S_SELECT_MODE). This is our Menu mode. No new action is taken by Processing until the user
selects a new mode in Blender and the mode.json file is updated.

Resetting Between Modes

When transitioning between modes, Processing conducts a reset procedure, in which all actuation
is halted and speed settings are cleared (S_RESET, S_RESET_STOP_PLATE,
S_RESET_MIRROR, S_RESET_SPEED_PLATE, S_RESET_MODE). This reset procedure brings
the motor settings back to a known state, and is necessary to ensure that actuation commands are
not unintentionally propagated between modes. Additionally, when a mode is successfully
executed, the move.json file is cleared to communicate completion (S_CLEAR_MODE_JSON).
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Move Calibrate

When Processing reads plate_calibrate_move from mode.json, it transitions to Move
Calibrate mode (S_PLATE_CALIBRATE_MOVE). In this mode, users can either update the speed
(S_PLATE_CALIBRATE_MOVE_SET_SPEED) or trigger the build plate to move a specified
distance (S_PLATE_CALIBRATE_MOVE_STEPS).

Move Home

When Processing reads plate_calibrate_move_home from mode.json, it transitions to
Move Home mode (S_PLATE_CALIBRATE_MOVE_HOME), in which the build plate is lowered to
home position. After the build plate has homed, the mode returns to Menu mode.

Run Pipeline

When Processing reads run_pipeline from mode.json, it transitions to Run Pipeline mode
(S_RUN_PIPELINE). In this mode, the main printing process is executed.

Our printing process works similar to existing color inkjet printing processes such as the da Vinci
printer. The printer first creates the geometry of the layer and then applies the color. After a layer
has been colored, the build plate raises, and the next layer is printed and colored. This process
repeats until the entire object is built and colored. The specific state transitions are detailed
below.

Before starting the print, layer images, settings, and desaturation times must have already been
generated by Blender, detailed in (Section 3.2.1: Blender). On starting Run Pipeline mode,
Processing generates its own build instructions for the printer based on the information input
from Blender (ie. the layer height, the bottom layer exposure time, the layer exposure time, and
the retraction speed). To start the print, the build plate first moves to home position
(S_MOVE_TO_Z0) to calibrate its position. The mirror then rotates to direct the UV light into the
resin tank (S_MIRROR_TO_UV) and then projects the first black-and-white image
(S_UV_SHINING) to cure the first layer of the object. The mirror then rotates to direct the RGB
light into the resin tank (S_MIRROR_TO_VIS), and shines a light pattern (S_PERFORM_OPT)
determined by the algorithm specified in (Section 3.2.2.2: Desaturation Algorithm) to color the
object. This process repeats for each layer, with settings continuously checked and updated
throughout the rest of the print (S_CHECK_CURRENT_LAYER, S_CHECK_NEXT_LAYER). When
the print has finished, the build plate moves to the top of the printer (S_SPEED_OF_TOP,
S_MOVING_TO_TOP), so that the print can be removed.

One failure mode is when the printed object does not adhere to the build plate at the beginning of
the print. To ensure that the print successfully adheres to the build plate
(S_CHECK_LAYER_STICKS), we have added a feature that allows the user to check the print
after the 3rd layer has been printed, in which the build plate will move to the top of the printer
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and wait for user keypress confirmation (S_STICK_LAYER_MOVE_UP,
S_STICK_LAYER_USER_KEYPRESS) before continuing.

3.2.2.2. Desaturation Algorithm

Colored images generated by Blender are imported into Processing, which then converts each
colored layer image into a series of RGB projection images for the visible light projector. To
generate these projection images, Processing runs a gradient descent optimization algorithm with
memoization, based on that of Photo-Chromeleon [1], to calculate the desaturation times
required for each of the projector’s R, G, B color channels. These RGB desaturation times are
then saved into a hashmap to be referenced and applied later during visible light projection steps.
The desaturation algorithm is run only once at the start of every print. To develop this algorithm,
we had to conduct experiments to determine the desaturation times of each dye when exposed to
individual RGB light input from the projector. This experiment is described in (Section 6.1: Dye
Desaturation Times).

3.2.2.3. Communicating between Processing and the Projectors

Both the UV projector and visible light projector are powered by its own external power source
and are controlled via HDMI input. The HDMI input value can be referenced as display numbers
in Processing (ie. Display 1 = UV projector, Display 2 = visible light projector).

To project images to the desired projectors in Processing, we can simply draw the image to the
correct display number via Processing’s built-in fullScreen()function. The images projected
to each display can also be individually modified (ie. rotate, scale, translate). This is useful for
projector calibration, which is described in (Section 4.1: Projector Alignment).

3.2.2.3. Communicating between Processing and Blender

Processing and Blender communicate by reading and writing files. To prevent read-and-write
conflicts between the two applications, processing_ready and blender_ready files are
generated whenever either application is accessing a file. For example, when Processing is
reading or writing to a file, it generates an empty file named processing_ready to prevent
Blender from opening files within the same directory. The same procedure occurs vice versa
whenever Blender must also read or write to a file.

3.2.2.4. Communicating between Processing and Arduino

Arduino and Processing communicate with each other via serial port communication.
Specifically, Processing reads from Arduino’s serial port. Before sending data, Arduino and
Processing must establish connection via a digital “handshake”.
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Since serial ports can only be read by one device at a time, Processing also acts as Arduino’s
“serial monitor”. Meaning that any print-statements sent by Arduino to the serial port, is also
consequently read and printed out by Processing.

Debug statements can also be sent, but are not acted upon as actionable state triggers. To
differentiate between debug statements and commands, a prefix is placed before each debug
statement. Specifications are as follows:

● [Processing] debug for Processing
● [State] debug for Processing's current state
● [Arduino] debug for Arduino
● [ESP8266] debug for ESP8266-01
● If a message is not preceded by a bracket description, it is a command sent from either

Processing or Arduino

Processing sends actuation commands to Arduino via the serial port. These commands are then
executed by Arduino to control the 3D printer. When Arduino completes an action (ie. motor
finishes moving), it will send a “done” command to Processing to signify that the command has
been successfully executed. This triggers a state change in Processing’s internal state machine,
effectively moving the printing process forward.

3.2.3. Arduino
Arduino is responsible for communicating with the sensors and actuators. The microcontroller
controls two stepper motors (via drivers), two hall-effect sensors, two IoT relays, one optical
limit switch, and one wifi module.

3.2.3.1. Commands

We developed a basic library for sending commands to Arduino. Commands can be sent through
either the Serial Monitor or Processing (but not both at once), and are received via Arduino’s
serial port. The Serial Monitor is used mostly for debugging purposes, while the integrated
system and user interface relies on Processing. The commands available are listed below. Note
that input arguments are capitalized and bolded.

To establish connection with Processing:

● processing_ready

To change the current mode:

● mode_changed,MODE

To move the build plate (z-axis stepper motor):
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● plate_move_up
● plate_move_down
● plate_home
● plate_stop
● plate_move_up_specific_steps,STEPS
● plate_move_down_specific_steps,STEPS

To change the build plate speed settings (z-axis stepper motor, steps/sec):

● plate_motor_change_speed_up,SPEED
● plate_motor_change_speed_down,SPEED
● plate_motor_change_speed_both,SPEED

To rotate the mirror (mirror stepper motor):

● mirror_move_uv
● mirror_move_vis
● mirror_stop

Note that stepper motor commands take in steps as input, not mm. Therefore, mm-to-step
conversion must be done in Processing before motor commands can be sent to Arduino.

3.2.4. Web Server
To enable remote observation and operation of the 3D printer, specifically during long print jobs
and for emergency stop procedures, we developed a web server, hosted on Heroku, that includes
both a frontend user interface and a backend API. This web server acts as an IoT intermediary
that stores, updates, and propagates 3D printer state information to relevant device endpoints.
The web server URL can be found here: https://photochromic-3d-printing.herokuapp.com/

3.2.4.1. Database

The web server uses ClearDB, which is a cloud service for running MySQL applications on
Heroku. This database acts as persistent storage to keep track of real-time 3D printer states. The
type of information stored in the ClearDB database is shown in Figure 24.

Figure 24. Database variables
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3.2.4.2. API

The backend API is scripted in Node and follows REST API guidelines. To update the database,
device clients can send the following API requests to the server, shown in Figure 25.

Figure 25. REST API

3.2.4.3. Website

The frontend user interface is designed via React. The website is a simple GUI with an
emergency stop button, and a display of current printer state information. The type of state
information displayed is similar to that provided in commercial 3D printers (ie. total layers,
current layer, amount of time left, etc).

The button is red (active) when the 3D printer is powered on. The button is greyed out (inactive)
when the 3D printer is powered off. A pop-up display asking for user confirmation is required
when the POWER OFF button is selected in order to prevent accidental misclicks. All times are
displayed in EST. Screenshots of the website are shown in Figure 26.

Figure 26. Website GUI for remote operation
Printer ON (left), Emergency stop pop-up confirmation (middle), Printer OFF (right)
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3.2.4.4. Updating Printer State

Figure 27. Updating the database

The web server updates the printer state based on information gathered from three separate
applications: the web server itself, Arduino, and Processing. State information is updated via API
requests, which require internet connection from each of the three applications.

The web server uses Arduino’s last connection time to determine whether the 3D printer is
currently ON or OFF.  Because Arduino controls the 3D printer, if the Arduino is powered on,
we assume the 3D printer is also powered on. If the web server has not received a ping from
Arduino within the last 30 seconds, the 3D printer is deemed to be OFF, and the UI is updated
accordingly on the website. When a user selects the POWER OFF button on the GUI, an
emergency stop request is set through the API, which triggers the shutdown procedure for both
Arduino and Processing.

When powered on, Arduino pings the web server via its wifi module every 5 seconds, which
updates the “last connected” time of the Arduino in the database. Simultaneously, Arduino also
requests state information every 5 seconds to determine if an emergency stop command has been
triggered. If an emergency stop is triggered, Arduino immediately signals the power relay to shut
down, which cuts power to all electrical components of the 3D printer system. This effectively
prevents any processes from continuing to run on the printer. For safety purposes, the printer
cannot be powered on remotely. Thus, users must physically return to the lab to the printer.

When the main Processing sketch is run, Processing pings the web server every 5 seconds, which
updates the “last connected” state of Processing in the database. Simultaneously, Processing also
requests state information every 5 seconds to determine if an emergency stop command has been
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triggered. If an emergency stop is triggered, Processing first sends a shutdown command to
Arduino (in case Arduino is delayed or hasn’t received the update yet), and then proceeds to exit
out of the sketch itself. This effectively halts Processing’s internal state machine, described in
(Section 3.2.2.1: State Machine), so that it will no longer send commands to Arduino.

Note that from the time that the user selects the POWER OFF button, there is a minimum 30
second delay before the user will receive confirmation that the printer has been powered off. This
is because the web server only deems the 3D printer to be OFF if it has not received a ping from
the Arduino within the last 30 seconds. This built-in delay was to ensure that the number of
requests combined from all our devices is below Heroku’s API rate request limit of 4500
requests per hour. To notify the user of this delay, the power off button is greyed out (inactive) on
the website, and the text is replaced with “Loading…” until 30 seconds has passed, in which it
will return to the greyed-out OFF button state.
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4. Calibration
Before starting a print, the UV projector, visible light projector, and base plate must be calibrated
to ensure that the 3D printer executes properly. The following sections detail these calibration
procedures.

4.1. Projector Alignment
The UV projector and visible light projector must be calibrated to ensure that the projected
images align during prints. The size mapping from Blender to the real-world is also calibrated at
this time, to ensure that the printer will actually print objects at the expected size specified in
Blender. This calibration procedure should be done anytime a hardware component (ie. a
projector, mirror, or printer) is physically moved.

To calibrate the visible light projector, first place a piece of paper with a centered 40mm square
on top of the tempered glass screen. Rotate the mirror 45° so that the light from the visible light
projector is directed to the tempered glass screen mounted above. Then, slice and export a
40mm³ cube in Blender. Project any black-and-white layer image onto the tempered glass screen.
Use Projector.pde to rotate, scale, and translate the projected image as needed so that it fits
onto our drawn 40mm square. Repeat this procedure with the UV projector. Figures 28-29 show
examples of this calibration process using 5mm and 40mm squares.

Figure 28. UV projector calibration
5mm square (left) vs 40mm square (right)

Figure 29. Visible light projector calibration
5mm square (left) vs 40mm square (right)
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4.2. Leveling the Build Plate
z0 represents the Z-axis position of the build plate at the first layer. z0 ensures that the first few
layers of the print will adhere properly to the build plate. If not calibrated correctly, rather than
adhering to the build plate, the print will remain stuck inside the resin tank. To calibrate this z0
position, first remove the resin tank, then manually lower the base plate until it is approximately
the thickness of a piece of paper above the tempered glass screen. Figure 30 shows an example
of this leveling procedure.

Figure 30. Leveling the build plate [11]

To manually lower the build plate, select “Calibrate” then “Move Down” under the “Calibration”
section in Blender. Place a piece of paper between the build plate and tempered glass screen, then
lower the build plate until moving the paper causes friction. At this point, select “Move Home”
under “Calibration”. The distance z0 is away from Home (in mm) will be printed in the
Processing console. Input this new value into “mmZ0” under “Printer Settings” in Blender. Then
export these settings by selecting “Export Settings” under “Export”.

This z0 position does not need to be calibrated at the start of every print, but should be done
throughout the use of the printer, or when prints start failing to adhere to the base plate.
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5. Evaluation
Our multi-color photochromic resin consists of mixing resin with a ratio of cyan, magenta, and
yellow photochromic ink. This ratio was determined via experimentation, with the goal of
achieving the highest color saturation, while also ensuring minimal effect of the photochromic
inks on the printing properties of the resin. The results of our formulation from our experiments
are described in the following sections. The materials experiments discussed in this section were
conducted by Isabel Qamar.

5.1. Developing the Photochromic Resin
We sourced White Resin from Formlabs as the base material. The photochromic dyes were
sourced from Yamada Chemical Co [6]: cyan (DAE-0001), magenta (DAE-0012) and yellow
(DAE-0068). The dyes are mixed into Ethyl Acetate (VWR International) to create the
photochromic ink, and then mixed the resulting ink into the resin. We maintain the C:M:Y ink
ratio of 1:1:3, based on that of Photo-Chromeleon [12], when mixed into the resin. An example
of our photochromic resin is depicted in Figure 31 below.

Figure 31. Photochromic resin
Photochromic resin stored a vial (left) vs. poured in the resin tank (right)

5.2. Resin Curing Times
The optimal wavelength for curing the Formlabs White Resin is 405nm. To determine the
exposure times necessary for each layer, we printed 40mm squares at 0.05mm layer thickness,
and experimented with the bottom layer and normal layer exposure times until solid prints were
created. The exposure times that worked best for our 3D printer system are as follows:

40



● The first and second layers of the resin should be exposed to UV light for 140 seconds to
ensure that the print adheres to the build plate.

● All subsequent layers should be exposed to UV light for 10 seconds, which is sufficient
to cure the resin.

When a print is completed, the print is placed in a light-sealed container of isopropanol, and
washed for 30 minutes to remove any excess uncured resin from the outer surfaces of the object.
The print is then dried. The resulting prints using the exposure times and layer settings specified
above are shown in Figure 32 below.

Figure 32. Cured prints
Adhered to base plate (left), washed and dried (right)
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6. Future Work
Below are proposed topics for future work. Because this research is still ongoing, our team has
already begun development on a few of these action items. Thus, the following sections provide
both an overview of each proposed topic as well as its current progress.

6.1. Dye Desaturation Times
The overall saturation of our photochromic resin can be programmatically controlled by
projecting specific wavelengths of light onto this resin-dye mixture. To achieve a desired print
color, we conducted experiments to determine the individual desaturation times of each dye. The
results of these experiments will enable us to algorithmically calculate (1) what wavelengths to
project onto our printed object, and (2) how long to project these wavelengths for, during our
final printing process. We detail the procedures for these experiments below.

To determine the desaturation times of each dye on a single layer when exposed to RGB
wavelengths from the visible light projector, we separately created magenta, cyan, and yellow
photochromic resin mixtures according to the procedure outlined in (Section 5.1 Developing the
Photochromic Resin), and cured the resin into 67x84mm rectangles at a layer height of 0.05mm,
using the UV projector.

Once printed, we then shone all three RGB wavelengths onto the printed layer to quantify the
effect of each of the projector’s LEDs on each resin-dye mixture. The saturation level of each
projected RGB color bar linearly decreased from top to bottom over time until it reached the
edge of the projection area. The resulting desaturation times for each dye and color channel were
then input into our optimization algorithm from (Section 3.2.2.2 Desaturation Algorithm) to
calculate the desaturation times required for each of the projector’s RGB color channels on each
image pixel during the actual print. Figure 33 shows the desaturation bars projected.

Figure 33. Projected desaturation bars
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Figure 34. Printed desaturation bars
cyan desaturation bars (left), magenta desaturation bars (right)

The resulting desaturation bars for the cyan and magenta prints, depicted above in Figure 34,
show the relative saturation decrease over time per color channel. Due to the quick desaturation
time of the yellow dyes, along with our project’s time constraints, we were unable to get the
printed desaturation bars for the yellow prints before the submission of this thesis, thus this is
one item of future work moving forward.

6.2. Evaluating the Effect of Visible Light through Thickness
Since each layer of printed resin has some degree of transparency, we must evaluate how shining
RGB light on a single layer affects the previously printed and colored layers. This data can then
be accounted for during the coloring process of the previous layers, and incorporated into our
final desaturation algorithm. Figure 35 provides conceptual drawing of this evaluation.

Figure 35. Conceptual drawing for effect of visible light through thickness

To characterize the vertical desaturation of color through the photochromic resin, we designed an
experiment in which the printer would print three cube samples in cyan, magenta and yellow
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photochromic resin individually. Once a cube has finished printing, the resin tank would be
emptied, and the cube would be lowered so that the last printed layer was in contact with the
bottom of the empty tank. RGB lights (in separate experiments) would be shown for 30 seconds
on each cube from the bottom using the visible light projector, for a total of 9 separate
experiments. The base plate would then be raised, and a picture of the color gradient would be
taken on the side of the projector that shows the vertical desaturation of color through the
photochromic resin. This data can then be analyzed and included into our final optimization
algorithm, similar to (Section 6.1: Dye Desaturation Times).

A separate state machine that provides the controls for this evaluation was developed for this
experiment, shown in Figure 36 below.

Figure 36. Processing state machine for experiment 2
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6.3. Determining the Color Gamut
Due to the physical constraints of our dyes, the range of colors printable via our 3D printer
system is constrained. This creates a discrepancy between desired colors (digital) and expected
colors (physical). Thus, it is important to evaluate the color gamut of our resin, so that users can
predict what colors their printed objects will ultimately be. We can evaluate the color gamut of
our multi-color photochromic resin similar to the experiments in Photo-Chromeleon [1].

6.4. Conducting Larger Prints
The majority of the objects that we printed for this project were <20 layers thick (ie. <1mm). The
reason is that many of our initial experiments (ie. resin curing times, dye desaturation times)
required only thin-layer prints. Figure 37 shows a few examples of the colored prints we
produced from our experiments during this time.

Figure 37. Example colored prints
Yellow print (left), RGB prints after 24 hours of ambient light exposure (right)

While these colored prints are a valid proof-of-concept for our 3D printer system, larger objects
should be printed to test the efficacy and usability of the system. Previously, we have attempted
to conduct one larger print of a 5mm pyramid. This print ultimately failed due to the mirror
motor overheating, thereby causing the mirror to shift near the end of the print, and causing the
tip of the printed pyramid to become offset, depicted in Figure 38.

Figure 38. Large print example
desired 3d model to print (left), actual print (right)
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Moving forward, one unknown is whether the electronics would survive longer-lasting,
multi-day prints. This is important to evaluate in order to determine the allowable size of future
prints (ie. for application examples). The main reason that the 3D printer currently fails for
longer prints is due to the electronics overheating (ie. stepper motor). To mitigate this issue, we
have added heat sinks to the motors and included cooling fans for heat dissipation. Additionally,
we have benchmarked the time required to print each layer via Processing, which can help us
determine which parts of the print are taking the longest, and thereby develop ways to optimize
these areas. Since stepper motors dissipate more heat the longer they are powered on, one idea
for decreasing overall heat dissipation is to determine how the overall print time can be
decreased. Suggested methods for how to decrease this print time are discussed in (Section 6.5
Decreasing Printing Time).

6.5. Decreasing Printing Time
The time taken to build and color an object is dependent upon several factors: the run time of the
software, the time taken to cure a layer, the time taken to apply the texture onto the layer, and the
total number of layers of the object.

From a hardware perspective, one large contributor to the long total print time is the current
communication protocol. Three separate applications (Blender, Arduino, Processing)
communicate with each other in our current 3D printer system. Through benchmarking the
Processing sketch, we found that the communication times, specifically between Arduino and
Processing via the Serial Port, average ~3-4 seconds per command. While this may not seem
long individually, this time adds up for longer prints. However, because we are using
off-the-shelf software, this delay in communication time is to be expected. One way to improve
communication times is to decrease the overall number of software applications we are using,
such as moving all logic into one low-level embedded system (ie. one device driver). Other
methods to decrease printing time include: finding optimizations in the current communication
protocol, removing extraneous steps in the printing process (ie. coloring every other layer, as
opposed to every layer), determining and decreasing the time required to fully cure and color
each layer, etc.

Overall, one large step we have already taken to decrease total print time was to replace the
default Photon S UV projector with the higher-powered Formlabs UV projector (InVision Ikarus
Full-HD DLP6500 light engine 385nm). This has hugely decreased the curing time required for
each layer (ie. from 30 seconds per layer via the default Photon S UV projector, to 10 seconds
per layer via the Formlabs UV projector). The addition of this modification along with the
suggested optimizations detailed above for decreasing overall print times can further optimize
the fabrication experience of our multi-color 3D printing system.
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7. Conclusion
For this project, we implemented an end-to-end digital-to-print fabrication infrastructure for
multi-color photochromic 3D printing. We also developed a new photochromic resin formulation
that can be cured and colored under one fabrication procedure. To create this resin, we
incorporate photochromic dyes into a UV-curable resin. By implementing an additional visible
light projector into the printer, along with a higher-powered UV projector and a rotatable mirror,
we can both cure and color each layer of an object as it is being printed.

In this thesis, we provided the implementation details and design decisions that went into
building this integrated printing infrastructure. We discussed the results from the experiments
conducted, and detailed the operational procedures for creating our photochromic resin
formulation and for controlling the 3D printer system. Lastly, we provided a brief discussion on
the limitations of our current design and recommended topics for future work moving forward.
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